Skip to main content
Log in

Response of PIWI grapevine cultivars to downy mildew in highland region of southern Brazil

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Downy mildew (DM) caused by Plasmopara viticola is a major grapevine disease in southern Brazil. Control of DM requires frequent fungicide treatments or the use of resistant cultivars. The pyramiding of previously identified resistance loci allows the selection of genotypes with combined resistance loci in order to build up sustainable resistance. The objective of this study was to evaluate the resistance response of PIWI cultivars Felicia, Brönner, and Calardis Blanc, containing Rpv3.1, Rpv10, and Rpv3.1 + Rpv3.2 loci, respectively, and two advanced breeding selections (ABS) containing the Rpv1 + Rpv3.1 pyramided, to the development of DM temporal dynamics. The experiment was conducted at an experimental vineyard in the highland of southern Brazil, during the 2016/2017 and 2017/2018 growing seasons. The genotype UFSC-2012-1-24 without resistance loci was used as susceptible control. DM incidence and severity were assessed biweekly from the first symptoms appearance until harvest. The cultivars and ABS were compared based on the following DM epidemiological parameters: a) beginning of symptoms appearance (BSA); b) maximum disease incidence and severity (Imax, Smax); c) time to reach maximum disease incidence/severity (TRMDI and TRMDS); and d) areas under incidence and severity disease progress curves (AUIDPC and AUSDPC). In general, there were significant differences in the estimated parameters depending on the genotype. The principal epidemiological variables that differentiated the PIWI cultivars were Smax and AUSDPC. The PIWI cultivars showed significantly lower Smax and AUSDPC of DM in comparison to the susceptible control in both 2016/2017 and 2017/2018 growing seasons. There were also significant differences between the cultivars for AUIDPC and AUSDPC in both growing seasons. Felicia cultivar showed the highest AUIDPC and AUSDPC in the 2016/2017 growing season. Surprisingly, in the growing seasons 2017/2018, Calardis Blanc displayed an increase in disease incidence and severity, showing a similar AUIDPC and AUSDPC to Felicia cultivar. In general, Bronner cultivar was the most resistant to DM. The ABS showed the lowest value of Imax, Smax, AUIDPC and AUSDPC, suggesting the effectiveness of the Rpv1 + Rpv3.1 pyramiding. The PIWI cultivars showed partial resistance to DM and are potential options for reducing fungicide use. The results showed that the pyramiding of resistance loci is fundamental to increase the genetic resistance to DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alonso-Villaverde, V., Viret, O., & Gindro, K. (2011). Downy mildew: Is resistance linked to inoculum concentration? Vitis, 50, 127–129.

    Google Scholar 

  • Austin, C. N., & Wilcox, W. F. (2011). Effects of fruit zone leaf removal, training systems, and irrigation on the development of grapevine powdery mildew. American Journal of Enology and Viticulture, 62, 193–198.

    Article  Google Scholar 

  • Bellin, D., Peressotti, E., Merdinoglu, D., Wiedemann-Merdinoglu, S., AdamBlondon, A. F., & Cipriani, G. (2009). Resistance to Plasmopara viticola in grapevine Bianca is controlled by a major dominant gene causing localised necrosis at the infection site. Theoretical and Applied Genetics, 120, 163–176.

    Article  PubMed  Google Scholar 

  • Boso, S., Alonso-Villaverde, A., Gago, P., Santiago, J. L., & Martínez, M. C. (2011). Susceptibility of 44 grapevine (Vitis vinifera L.) varieties to downy mildew in the field. Australian Journal of Grape and Wine Research, 17, 394–400.

    Article  Google Scholar 

  • Buffara, C. R. C., Angelotti, F., Vieira, F. A., Bogo, A., Tessmann, D. J., & De Bem, B. P. (2014). Elaboration and validation of a diagrammatic scale to assess downy mildew severity in grapevine. Ciência Rural, 44, 1384–1391.

    Article  Google Scholar 

  • Caffi, T., Legler, S. E., González-Domínguez, E., & Rossi, V. (2016). Effect of temperature and wetness duration on infection by Plasmopara viticola and on post-inoculation efficacy of copper. European Journal of Plant Patholology, 144, 737–750.

    Article  Google Scholar 

  • Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: Wiley.

    Google Scholar 

  • De Bem, B. P., Bogo, A., Everhart, S., Casa, R. T., Gonçalves, M. J., Marcon, J. L., & da Cunha, I. C. (2015). Effect of Y-trellis and vertical shoot positioning training systems on downy mildew and botrytis bunch rot of grape in highlands of southern Brazil. Scientia Horticulturae, 185, 162–166.

    Article  Google Scholar 

  • De Bem, B. P., Bogo, A., Everhart, S., Casa, R. T., Gonçalves, M. J., Marcon, J. L., Rufato, L., da Silva, F. N., Allebrandt, R., & da Cunha, I. C. (2016). Effect of four training systems on the temporal dynamics of downy mildew in two grapevine cultivars in southern Brazil. Tropical Plant Pathology, 41, 370–379.

    Article  Google Scholar 

  • Delmas, C. E., Fabre, F., Jolivet, J., Mazet, I., Richart, D., Cervera, S., Delière, L., & Delmotte, F. (2016). Adaptation of a plant pathogen to partial host resistance: Selection for greater aggressiveness in grapevine downy mildew. Evolutionary Applications, 9, 709–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Gaspero, G., Copetti, D., Coleman, C., Castellarin, S. D., Eibach, R., & Kozma, P. (2012). Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance. Theoretical and Applied Genetics, 124, 277–286.

    Article  PubMed  Google Scholar 

  • Eibach, R., Zyprian, E., Welter, L. J., & Töpfer, R. (2007). The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis, 46, 120–124.

    CAS  Google Scholar 

  • Fischer, B. M., Salakhutdinov, I., Akkurt, M., Eibach, R., Edwards, K. J., & Töpfer, R. (2004). Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theoretical and Applied Genetics, 108, 501–515.

    Article  CAS  PubMed  Google Scholar 

  • Jeager, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59, 434–446.

    Article  Google Scholar 

  • Kennelly, M. M., Gadoury, D. M., Wilcox, H. F., Magarey, P. A., & Seem, R. C. (2005). Seasonal development of ontogenic resistance to downy mildew in grape berries and rachises. Phytopathology, 95, 1445–1452.

    Article  PubMed  Google Scholar 

  • Merdinoglu, D., Wiedemann-Merdinoglu, S., Coste, P., Dumas, V., Haetty, S., Butterlin, G., & Greif, C. (2003). Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Horticulturae, (603), 451–456.

  • Nascimento-Gavioli, M. C. A., Agapito-Tenfen, S. Z., Nodari, R. O., Welter, L., Sanchez Mora, F. D., Saifert, L., da Silva, A. L., & Guerra, M. P. (2017). Proteome of Plasmopara viticola-infected Vitis vinifera provides insights into grapevine Rpv1/Rpv3 pyramided resistance to downy mildew. Journal of Proteomics, 151, 264–274.

    Article  CAS  PubMed  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 633–1644.

    Article  Google Scholar 

  • Saifert, L., Mora, F. D. S., Assumpcao, W. T., Giacometti, R., Novak, E. I., Zanghelini, J. A., Dal Vesco, L. L., Nodari, R. O., Eibach, R., & Welter, L. J. (2018). Marker-assisted pyramiding of resistance loci to grape downy mildew. Pesquisa Agropecuária Brasileira, 53, 602–610.

    Article  Google Scholar 

  • Sánchez-Mora, F. D., Saifert, L., Zanghelini, J., Assumpção, W. T., Guginski-Piva, C. A., Giacomet, R., Novak, E. I., Klabunde, G. H., Eibach, R., Vesco, L. D., Nodari, R. O., & Welter, L. J. (2017). Behavior of grape breeding lines with distinct resistance alleles to downy mildew (Plasmopara viticola). Crop Breeding and Applied Biotechnology, 17, 141–149.

    Article  CAS  Google Scholar 

  • Schwander, F., Eibach, R., Fechter, I., Hausmann, L., Zyprian, E., & Töpfer, R. (2012). Rpv10: A new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theoretical and Applied Genetics, 124, 163–176.

    Article  CAS  PubMed  Google Scholar 

  • Töpfer, R., Hausmann, L., Harst, M., Maul, E., Zyprian, E., & Eibach, R. (2011). New horizons for grapevine breeding. Fruit, Vegetable and Cereal Science and Biotechnology, 5, 79–100.

    Google Scholar 

  • Venuti, S. (2013). Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS One, 12, 8.

  • Vezzulli, S., Vecchione, A., Stefanini, M., & Zulini, L. (2018). Downy mildew resistance evaluation in 28 grapevine hybrids promising for breeding programs in Trentino region (Italy). European Journal of Plant Pathology, 150, 485–495.

    Article  CAS  Google Scholar 

  • Welter, L. J., Göktürk-Baydar, N., Akkurt, M., Maul, E., Eibach, R., Töpfer, R., & Zyprian, E. M. (2007). Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Molecular Breeding, 20, 359–374.

    Article  CAS  Google Scholar 

  • Yu, Y., Zhang, Y., & Lu, J. (2012). The mode of host resistance to Plasmopara viticola infection of grapevines. Phytopathology, 102, 1094–1101.

    Article  PubMed  Google Scholar 

  • Zyprian, E., Ochner, I., Schwander, F., Simon, S., Hausmann, L., Bonow-Rex, M., Moreno-Sanz, P., Grando, M. S., Wiedemann-Merdinoglu, S., Merdinoglu, D., Eibach, R., & Topfer, R. (2016). Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Molecular Genetics and Genomics, 291, 1573–1594.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by CNPq (The National Council for Scientific and Technological Development), FAPESC (Santa Catarina State Foundation for Scientific and Technological Development), Sindivinho). We are thankfull for the scientific collaboration with the institutes Julius Kühn-Institut, Institute for Grapevine Breeding Geilweilerhof, Germany; Edmund Mach Foundation, San Michele all’Adige, Trento, Italy; Santa Catarina State Agricultural Research and Rural Extension Agency (EPAGRI).

Funding

This study was funded by CNPq (The National Council for Scientific and Technological Development), FAPESC (Santa Catarina State Foundation for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leocir J. Welter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Not applicable to this study, did not work with humans or animals.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanghelini, J.A., Bogo, A., Dal Vesco, L.L. et al. Response of PIWI grapevine cultivars to downy mildew in highland region of southern Brazil. Eur J Plant Pathol 154, 1051–1058 (2019). https://doi.org/10.1007/s10658-019-01725-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01725-y

Keywords

Navigation