Skip to main content
Log in

Isolation and identification of a Bacillus subtilis HZ-72 exhibiting biocontrol activity against flax seedling blight

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Seedling blight caused by Rhizoctonia solani is a serious soil-borne disease on flax. In this study, we isolated a bacterial strain HZ-72 from the rhizosphere soil of flax with obvious inhibitory effect on R. solani and other six plant fungal pathogens. Strain HZ-72 was identified as Bacillus subtilis based on morphological, physiological, biochemical characteristics and 16S rDNA sequence analysis. In greenhouse experiments, the control efficiency of strain HZ-72 reached 83.34%. Additionally, in vitro assays indicated that cell wall-degrading enzymes such as protease and cellulase, volatile compounds, proteins and lipopeptides produced by strain HZ-72 all contributed to its antagonistic activity against R. solani. To our knowledge, this is the first report on the use of a rhizosphere B. subtilis strain as a biocontrol agent for the biocontrol of flax seedling blight caused by R. solani.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashour, A. Z. A., & Aida, H. (2000). Biocontrol of flax seedling blight with mixtures of Pseudomonas spp. Pakistan Journal of Biological Sciences, 3(3), 368–371.

    Article  Google Scholar 

  • Bach, E., Seger, G. D. S., Fernandes, G. C., Lisboa, B. B., & Passaglia, L. M. P. (2016). Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Applied Soil Ecology, 99, 141–149.

    Article  Google Scholar 

  • Buchanan, R. E., & Gibbons, N. E. (1984). Bergey’s manual of determinative bacteriology (8th Chinese ed.). Beijing: Science Press.

  • Calvo, H., Marco, P., Blanco, D., Oria, R., & Venturini, M. E. (2017). Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiology, 63, 101–110.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan, A. K., Maheshwari, D. K., Kim, K., & Bajpai, V. K. (2016). Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: Isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Canadian Journal of Microbiology, 62(10), 880–892.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. F., Zhang, M. S., Wang, J. Y., Lv, D., Ma, Y. F., Zhou, B., & Wang, B. (2017). Biocontrol effects of Brevibacillus laterosporus AMCC100017 on potato common scab and its impact on rhizosphere bacterial communities. Biological Control, 106, 89–98.

    Article  Google Scholar 

  • Dong, X. Z., & Cai, M. Y. (2001). Common bacterial system identification manual. Beijing: Science Press.

    Google Scholar 

  • Fan, Z. Y., Miao, C. P., Qiao, X. G., Zheng, Y. K., Chen, H. H., Chen, Y. W., Xu, L. H., Zhao, L. X., & Guan, H. L. (2016). Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng. Journal of Ginseng Research, 40(2), 97–104.

    Article  CAS  PubMed  Google Scholar 

  • Fan, H. Y., Ru, J. J., Zhang, Y. Y., Wang, Q., & Li, Y. (2017). Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiological Research, 199, 89–97.

    Article  CAS  PubMed  Google Scholar 

  • Fernando, W. D., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 37(5), 955–964.

    Article  CAS  Google Scholar 

  • Ferraz, L. P., da Cunha, T., da Silva, A. C., & Kupper, K. C. (2016). Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiological Research, 188, 72–79.

    Article  PubMed  Google Scholar 

  • Fu, D., Xiang, H., Yu, C., Zheng, X., & Yu, T. (2016). Colloidal chitin reduces disease incidence of wounded pear fruit inoculated by Penicillium expansum. Postharvest Biology and Technology, 111, 1–5.

    Article  CAS  Google Scholar 

  • Gudmewad, R. B., Khandagale, S. G., & Kumara, S. R. V. (2016). Correlation and path coefficient analysis of economically important traits in linseed (Linum usitatissimum L.) germplasm. Electronic Journal of Plant Breeding, 7(2), 427–433.

    Article  Google Scholar 

  • Guo, X., Chen, D. D., Peng, K. S., Cui, Z. W., Zhang, X. J., Li, S., & Zhang, Y. A. (2016). Identification and characterization of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed. Fish & Shellfish Immunology, 52, 74–84.

    Article  CAS  Google Scholar 

  • He, J. Q., Wang, J. L., Tang, Y. B., & Wang, R. X. (2005). A technical study on flax seeds treatment with fungicides against Rhizoclonia solanikiikn. China’s Fiber and Products, 27(3), 146–148.

    Google Scholar 

  • Heller, K., Sheng, Q. C., Guan, F., Alexopoulou, E., Hua, L. S., Wu, G. W., Jankauskienė, Z., & Fu, W. Y. (2015). A comparative study between Europe and China in crop management of two types of flax: Linseed and fibre flax. Industrial Crops and Products, 68, 24–31.

    Article  Google Scholar 

  • Jadhav, H. P., Shaikh, S. S., & Sayyed, R. Z. (2017). Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: An overview. In Rhizotrophs: plant growth promotion to bioremediation (pp. 183–203). Singapore: Springer.

  • Khedher, S. B., Kilani-Feki, O., Dammak, M., Jabnoun-Khiareddine, H., Daami-Remadi, M., & Tounsi, S. (2015). Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Comptes Rendus Biologies, 338(12), 784–792.

    Article  PubMed  Google Scholar 

  • Kumar, K. V. K., Yellareddygari, S. K., Reddy, M. S., Kloepper, J. W., Lawrence, K. S., Zhou, X. G., Sudini, H., Groth, D. E., Raju, S. K., & Miller, M. E. (2012). Efficacy of Bacillus subtilis MBI 600 against sheath blight caused by Rhizoctonia solani and on growth and yield of rice. Rice Science, 19(1), 55–63.

    Article  Google Scholar 

  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematices (pp. 115–175). Chichester: Wiley.

    Google Scholar 

  • Liu, B., Huang, L. L., Buchenauer, H., & Kang, Z. S. (2010). Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pesticide Biochemistry and Physiology, 98(2), 305–311.

    Article  CAS  Google Scholar 

  • Ma, X., Wang, X. B., Cheng, J., Nie, X., Yu, X. X., Zhao, Y. T., & Wang, W. (2015). Microencapsulation of Bacillus subtilis B99-2 and its biocontrol efficiency against Rhizoctonia solani in tomato. Biological Control, 90, 34–41.

    Article  Google Scholar 

  • Mu, J. J., Li, X. P., Jiao, J. G., Ji, G. N., Wu, J., Hu, F., & Li, H. X. (2017). Biocontrol potential of vermicompost through antifungal volatiles produced by indigenous bacteria. Biological Control, 112, 49–54.

    Article  CAS  Google Scholar 

  • Prasanna Kumar, M. K., Amruta, N., Manjula, C. P., Puneeth, M. E., & Teli, K. (2017). Characterisation, screening and selection of Bacillus subtilis isolates for its biocontrol efficiency against major rice diseases. Biocontrol Science and Technology, 27(4), 581–599.

    Article  Google Scholar 

  • Shi, J. F., & Sun, C. Q. (2017). Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest. Brazilian Journal of Microbiology, 48, 706–714. https://doi.org/10.1016/j.bjm.2017.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, G. Z., Yao, T., Feng, C. J., Chen, L., Li, J. H., & Wang, L. D. (2017). Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus. Biological Control, 104, 35–43.

    Article  CAS  Google Scholar 

  • Velusamy, P., Immanuel, J. E., & Gnanamanickam, S. S. (2013). Rhizosphere bacteria for biocontrol of bacterial blight and growth promotion of rice. Rice Science, 20(5), 356–362.

    Article  Google Scholar 

  • Vida, C., Cazorla, F. M., & de Vicente, A. (2017). Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Research in Microbiology, 168(6), 583–593.

    Article  CAS  PubMed  Google Scholar 

  • Xue, L., Xue, Q. H., Chen, Q., Lin, C. F., Shen, G. H., & Zhao, J. (2013). Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Protection, 43, 231–240.

    Article  Google Scholar 

  • Yánez-Mendizábal, V., Usall, J., Viñas, I., Casals, C., Marín, S., Solsona, C., & Teixidó, N. (2011). Potential of a new strain of Bacillus subtilis CPA-8 to control the major postharvest diseases of fruit. Biocontrol Science and Technology, 21(4), 409–426.

    Article  Google Scholar 

  • Yang, X., Liu, L. Y., Guang, F. Z., Li, Z. G., Wu, G. W., Wang, X., Lu, Y., & Chen, H. (2009). Identification of flax Rhizoctonia solani pathogen and medicament selection. Heilongjiang Agricultural Sciences in China, 2009(4), 67–68.

    Google Scholar 

  • Youssef, S. A., Tartoura, K. A., & Abdelraouf, G. A. (2016). Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biological Control, 100, 79–86.

    Article  CAS  Google Scholar 

  • Yu, X. M., Ai, C. X., Xin, L., & Zhou, G. F. (2011). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47(2), 138–145.

    Article  Google Scholar 

  • Yu, Y. Y., Jiang, C. H., Wang, C., Chen, L. J., Li, H. Y., Xu, Q., & Guo, J. H. (2017). An improved strategy for stable biocontrol agents selecting to control rice sheath blight caused by Rhizoctonia solani. Microbiological Research, 203, 1–9.

    Article  PubMed  Google Scholar 

  • Zhang, M. J., Li, J. L., Shen, A. R., Tan, S. Y., Yan, Z., Yu, Y. T., Xue, Z. D., Tan, T. M., & Zeng, L. B. (2016). Isolation and identification of Bacillus amyloliquefaciens IBFCBF-1 with potential for biological control of Phytophthora blight and growth promotion of pepper. Journal of Phytopathology, 164(11–12), 1012–1021.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhou, Y. Y., Li, Y., Fu, X. C., & Wang, Q. (2017). Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew. Crop Protection, 96, 173–179.

    Article  Google Scholar 

  • Zhang, B., Wang, J. N., Ning, S. Q., Yuan, Q., Chen, X. N., Zhang, Y. Y., & Fan, J. F. (2018). Peptides derived from tryptic hydrolysate of Bacillus subtilis culture suppress fungal spoilage of table grapes. Food Chemistry, 239, 520–528. https://doi.org/10.1016/j.foodchem.2017.06.153.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S., Li, J. Y., Liu, F., Yang, W. X., Zhang, N., & Liu, D. Q. (2015). Antagonism of Paenibacillus polymyxa Z-X-225 against pathogen of pricklyash peel ear blight disease. Journal of Plant Protection in China, 42(5), 863–864.

    Google Scholar 

  • Zheng, Y., Xue, Q. Y., Xu, L. L., Xu, Q., Lu, S., Gu, C., & Guo, J. H. (2011). A screening strategy of fungal biocontrol agents towards Verticillium wilt of cotton. Biological Control, 56(3), 209–216.

    Article  Google Scholar 

  • Zhu, X., Yang, G. A., Wang, X. M., Chen, X. Y., Sun, C. H., Yang, J. Q., Dong, L. M., Chen, G. H., Sheng, J. B., Tian, C. L., & Yang, W. G. (2010). Control efficacy of several agrochemicals to flax Rhizoctonia solani in field. Plant Fiber Sciences in China, 32(6), 323–326.

    Google Scholar 

  • Zouari, I., Jlaiel, L., Tounsi, S., & Trigui, M. (2016). Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds. Biological Control, 100, 54–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2015- IBFC), the Major Scientific and Technological Projects of Hunan Province (2016NK1001), the National Key Research and Development Program of China (2017YFD0200900) and the project for Monitoring and Prevention of Crop Pests, Disease, and Mice from the Ministry of Agriculture (S158).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangbin Zeng or Zhun Yan.

Ethics declarations

Conflict of interest

The work complies to the ethical standards of this journal. The authors declare that they have no conflict of interest. This research did not involve human and/or animal participants. The manuscript was only submitted to EJPP and not previously published. All authors contributed and agreed to submission to EJPP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, T., Zhu, J., Shen, A. et al. Isolation and identification of a Bacillus subtilis HZ-72 exhibiting biocontrol activity against flax seedling blight. Eur J Plant Pathol 153, 825–836 (2019). https://doi.org/10.1007/s10658-018-1595-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1595-4

Keywords

Navigation