Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 2, pp 397–415 | Cite as

Pseudomonas diversity in western Algeria: role in the stimulation of bean germination and common bean blight biocontrol

  • Slimane Mokrani
  • Abdelwahab Rai
  • Lakhder Belabid
  • Ameur Cherif
  • Hanane Cherif
  • Mouna Mahjoubi
  • Elhafid NabtiEmail author
Article
  • 81 Downloads

Abstract

The aim of this work was to determine the functional diversity of soil bacteria belonging to the Pseudomonas genus, to study their effects on bean (Phaseollus vulgaris L) seed germination and their biocontrol potential of common bean blight. Bacteria were isolated and identified based on physiological and biochemical characters and BOX-PCR. Followed by qualitative and/or quantitative analysis of their secondary metabolites. 50 soil bacteria were affected to the two groups of fluorescent (72%) and non-fluorescent Pseudomonads (28%). The UPGMA (Unweighted Pair Group Method with Arithmetic Mean) showed five phenons of carbon sources assimilation; at the time that BOX-PCR profiling resulted in five clusters characterized by 29 different haplotypes. (66%) isolates induced phosphate solubilization; (24%) were HCN producers, (21%) showed IAA production and all isolates had produced siderophores. In vitro antibacterial activity against Xapf showed 26.67 and 24 mm of inhibition zone using the two isolates P. grimontii P25 and P. cepatia P7, respectively. Similarly, the same isolates significantly reduced Xapf-bean common blight intensity, while their co-inoculation was less effective. The isolate P. cepatia P7 was highly effective on seed germination and root growth properties, then P. grimontii P25. Thus, the selected isolates could play a crucial bean growth promotion and bean common blight biocontrol as alternative to chemicals for crop yield enhancement.

Keywords

Pseudomonas Plant growth promoting bacteria and Xanthomonas axonopodis pv. phaseoli var. fuscans 

References

  1. Abd-Alla, M. H., El-Enany, A. W. E., Nafady, N. A., Khalaf, D. M., & Morsy, F. M. (2014). Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Viciafaba L.) in alkaline soil. Microbiological Research, 169(1), 49–58.Google Scholar
  2. Adams, C., Dowling, D. N., O'Sullivan, D. J., & O'Gara, F. (1994). Isolation of a gene (pbsC) required for siderophore biosynthesis in fluorescent Pseudomonas sp. strain M 114. Molecular Genetics and Genomics.  https://doi.org/10.1007/bf00284199.
  3. Al-Saleh, M. A. (2014). Evaluation of Saudi fluorescent pseudomonads isolates as a biocontrol agent against citrus canker disease caused by Xanthomonas citri subsp citri. Egyptian Academic Journal of Biological Sciences, 6(2), 1–7.Google Scholar
  4. Armada, E., Roldán, A., & Azcon, R. (2014). Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in the natural arid soil. Microbial Ecology, 67(2), 410–420.Google Scholar
  5. Askeland, R. A., & Morrison, S. M. (1983). Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Applied and Environmental Microbiology, 45(6), 1802–1807.Google Scholar
  6. Bakker, A. W., & Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biology and Biochemistry, 19, 451–457.  https://doi.org/10.1016/0038-0717(87)90037-x.Google Scholar
  7. Beneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35, 1044–1051.  https://doi.org/10.1590/s1415-47572012000600020.Google Scholar
  8. Bernier, M. (2011). Étude de la variabilité des symptômes pathologiques affectant le haricot commun. In Ecole Supérieure d'Agriculture. Institut Nationale de Recherche Agronomique, FRA. http://prodinra.inra.fr/ft?id=4F54AFCF-2B62-483F-A833-D1CC5DADDADA. Accessed 22 July 2014.
  9. Boruah, H. P. D., Rabha, B. K., Saikia, N., & Kumar, B. S. D. (2003). Fluorescent Pseudomonas influences palisade mesophyll development and spatial root development in Phaseolus vulgaris. Plant and Soil, 256, 291–301.  https://doi.org/10.1023/A:1026197300684.Google Scholar
  10. Bossis, E., Lemanceau, P., Latour, X., & Gardan, L. (2000). The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: Current status and need for revision. Agronomie, 20, 51–63.  https://doi.org/10.1051/agro:2000112.Google Scholar
  11. Bric, J. M., Bostock, R. M., & Silverstone, S. E. (1991). Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Applied and Environmental Microbiology, 57(2), 535–538.Google Scholar
  12. Broughton, W. J., Hernandez, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) - model food legumes. Plant and Soil.  https://doi.org/10.1023/a:1024146710611.
  13. Carrillo-Castañeda, G., Muños, J. J., Peralta-Videa, J. R., Gomez, E., Tiemannb, K. J., Duarte-Gardea, M., & Gardea-Torresdey, J. L. (2002). Alfalfa growth promotion by bacteria grown under iron limiting conditions. Advances in Environmental Research, 6, 391–399.  https://doi.org/10.1016/s1093-0191(02)00054-0.Google Scholar
  14. Cartwright, D. K., & Benson, D. M. (1995). Comparison of Pseudomonas species and application techniques for biocontrol of Rhizoctonia stem rot of Poinsettia. Plant Disease.  https://doi.org/10.1094/pd-79-0309.
  15. Chin-A-Woeng, T. F. C., Bloemberg, G. V., & Lugtenberg, B. J. J. (2003). Mechanisms of biological control of phytopathogenic fungi by Pseudomonas spp. In G. Stacey & N. T. Keen (Eds.), Plant-microbe interactions (pp. 173–225). The American Phytopathologial Society: Saint Paul.Google Scholar
  16. Cho, J. C., & Tiedjen, J. M. (2000). Biogeography and degree of endemicity of fluorescent pseudomonads strains in soil. Applied and Environmental Microbiology, 66, 5448–5456.  https://doi.org/10.1128/aem.66.12.5448-5456.2000.Google Scholar
  17. Christina, J. A., Aruna, S. S., Anbumalarmathi, J., Umamaheswari, K., & Shyamala, K. (2015). Studies on siderophores production by microbial isolates obtained from aquatic environment. European Journal of Experimental Biology, 5(10), 41–45.Google Scholar
  18. Corrêa, B. O., Soares, V. N., Sangiogo, M., de Oliveira, J. E. R. E., & Moura, A. E. B. (2017). Interaction between bacterial biocontrol-agents and strains of Xanthomonas axonopodis pv. phaseoli effects on biocontrol efficacy of common blight in beans. African Journal of Microbiology Research.  https://doi.org/10.5897/ajmr2017.8565.
  19. Delif, L. R., Tarnawski, S., Hamelin, J., Philippot, L., Aragno, M., & Fromin, N. (2005). Frequency and diversity of nitrate reductase genes among nitrate-dissimilating Pseudomonas in the rhizosphere of perennial grasses grown in field conditions. Microbial Ecology, 49, 63–72.  https://doi.org/10.1007/s00248-003-0228-3.Google Scholar
  20. Dorjey, S., Dolkar, D., & Sharma, R. (2017). Plant growth promoting Rhizobacteria Pseudomonas: A Review. International Journal of Current Microbiology and Applied Sciences.  https://doi.org/10.20546/ijcmas.2017.607.160.
  21. Egamberdieva, D. (2011). Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphisTSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant, Soil and Environment, 57(3), 122–127.Google Scholar
  22. Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, 103, 626–631.  https://doi.org/10.1073/pnas.0507535103.Google Scholar
  23. Fitriyah, D., Arimurti, S., & Senjarini, K. (2013). Physiological and molecular characteristics of bacterial isolates from Bandealit Coastal Area Jember, East Java, Indonesia. HAYATI Journal of Biosciences, 20(2), 89–93.Google Scholar
  24. Fourie, D. (2002). Distribution and severity of bacterial diseases on dry beans (Phaseolus vulgaris L.) in South Africa. Journal of Phytopathology.  https://doi.org/10.1046/j.1439-0434.2002.00745.x.
  25. Garcia-Vallve, S., Palau, J., & Romeu, A. (1999). Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Molecular Biology and Evolution, 16, 1125–1134.  https://doi.org/10.1093/oxfordjournals.molbev.a026203.Google Scholar
  26. Garibaldi, J. A. (1967). Media for the enhancement of fluorescent pigment production by Pseudomonas species. Journal of Bacteriology, 94(5), 1296–1299.Google Scholar
  27. Giorgio, A., Lo Cantore, P., Shanmugaiah, V., Lamorte, D., & SanteIacobellis, N. (2016). Rhizobacteria isolated from common bean in southern Italy as potential biocontrol agents against common bacterial blight. European Journal of Plant Pathology, 144, 297–309.  https://doi.org/10.1007/s10658-015-0767-8.Google Scholar
  28. Giovannucci, D., Scherr, S. J., Nierenberg, D., Hebebrand, C., Shapiro, J., Milder, J., & Wheeler, K. (2012). Food and agriculture: The future of sustainability. A strategic input to the Sustainable Development in the 21st Century (SD21) project. New York: United Nations Department of Economic And Social Affairs, Division For Sustainable Development, https://sustainabledevelopment.un.org/content/documents/agriculture_and_food_the_future_of_sustainability_web.pdf. Accessed 13 July 20018.
  29. Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39.Google Scholar
  30. Glick, B. R., & Bashan, Y. (1997). Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances, 15(2), 353–378.Google Scholar
  31. Goszczynska, T., Serfontein, J. J., & Serfontein, S. (2000). Intoducion to practical microbioloy. Pretoria: Plant Protection Research Institute.Google Scholar
  32. Gupta, S., & Kaushal, R. (2017). Plant growth promoting Rhizobacteria: Bioresouce for enhanced productivity of Solanaceous vegetable crops. Acta Scientific Agriculture, 1(3), 10–15.Google Scholar
  33. Hawkes, C. & Ruel, M. T. (2008). From Agriculture to Nutrition: Pathways, Synergies and Outcomes. Agricultural and Rural Development Notes; No. 40.World Bank, Washington, DC. © World Bank. https://openknowledge.worldbank.org/handle/10986/9511 License: CC BY 3.0 IGO. Accessed 22 April 2018.
  34. Hinsinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 237, 173–195.  https://doi.org/10.1023/A:1013351617532.Google Scholar
  35. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey’s manual of determinative bacteriology. Baltimore: Williams and Wilkins Co..Google Scholar
  36. Jeyanthi, V., & Ganesh, P. (2013). Production, optimization and characterization of Phytohormone indole acetic acid by Pseudomonas fluorescence. International Journal of Pharmaceutical and Biological Archive, 4(3), 514–520.Google Scholar
  37. Kapilan, R., & Thavaranjit, A. C. (2015). Promotion of vegetable seed germination by soil borne bacteria. Archives of Applied Science Research, 7(8), 17–20.Google Scholar
  38. Karakaya, A., & Özcan, S. (2001). Susceptibility of different bean (Phaseolus vulgaris L.) cultivars to Agrobacterium tumefaciens. Turkish Journal of Biology, 25(4), 447–452.Google Scholar
  39. Khan, M. S., Zaidi, A., Ahemad, M., Oves, M., & Wani, P. A. (2010). Plant growth promotion by phosphate solubilizing fungi-current perspective. Archives of Agronomy and Soil Science, 56, 73–98.  https://doi.org/10.1080/03650340902806469.Google Scholar
  40. Kragelund, L., & Nybroe, O. (1996). Competition between Pseudomonas fluorescens Ag1 and Alcaligenes eutrophus JMP134 (pJP4) during colonization of barley roots. FEMS Microbiology Ecology, 20(1), 41–51.Google Scholar
  41. Krishnaswamy, V., & Seshu, D. V. (1990). Germination after accelerate aging and associated characters in rice varieties. Seed Science and Technology, 18(1), 147–156.Google Scholar
  42. Kumar, G. P., Desai, S., Amalraj, E. L. D., & Pinisetty, S. (2015). Impact of seed bacterization with PGPR on growth and nutrient uptake in different cultivable varieties of green gram. Asian Journal of Agricultural Research.  https://doi.org/10.3923/ajar.2015.113.122.Google Scholar
  43. Lakshmi, V., Kumari, S., Singh, A., & Prabha, C. (2015). Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings. Journal of King Saud University Science, 27, 113–119.  https://doi.org/10.1016/j.jksus.2014.04.007.Google Scholar
  44. Lelliott, R., Billing, E., & Hayward, A. C. (1966). A determinative scheme for the fluorescent plant pathogenic Pseudomonas. Journal of Applied Microbiology, 29, 470–489.  https://doi.org/10.1111/j.1365-2672.1966.tb03499.x.Google Scholar
  45. Lemanceau, P. (1992). Effets bénéfiques de rhizobactéries sur les plantes: exemple des Pseudomonas spp fluorescents. Agronomie, 12, 413–437.  https://doi.org/10.1051/agro:19920601.Google Scholar
  46. Lorck, H. (1948). Production of hydrocyanic acid by bacteria. Physiologia Plantarum, 1, 142–146.  https://doi.org/10.1111/j.1399-3054.1948.tb07118.x.Google Scholar
  47. Maloy, O. C. (2005). Plant disease management. The Plant Health Instructor.  https://doi.org/10.1094/PHI-I-2005-0202-01.
  48. McConnell, M., Mamidi, S., Chikara, R. L. S., Rossi, M., & McClean, R. P. P. (2010). Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics.  https://doi.org/10.1007/s00122-010-1375-9.
  49. Meliani, A. (2012). Contribution à l’étude de la diversité écologique et fonctionnelle des Pseudomonas fluorescens. PhD thesis, université d’Oran, Algérie.Google Scholar
  50. Mezaache, A. S., Haichour, N., Guechi, A., & Zerroug, M. M. (2014). Telluric Pseudomonads metabolites involved in the antagonism to phytopathogenic fungi. Global Journal of Biology, Agriculture & Health Sciences, 3(1), 71–77.Google Scholar
  51. Nandi, M., Selin, C., Brawerman, G., Fernando, W. G. D., & de Kievit, T. (2017). Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biological Control, 108, 47–54.  https://doi.org/10.1016/j.biocontrol.2017.02.008.Google Scholar
  52. Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170, 265–270.Google Scholar
  53. Neilands, J. B. (1989). Siderophores systems of bacteria and fungi. In T. J. Beveridge & R. J. Doyle (Eds.), Metal ions and bacteria (pp. 141–164). New Jersey: Wiley.Google Scholar
  54. Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33, 197.  https://doi.org/10.1007/s11274-017-2364-9.Google Scholar
  55. Palleroni, N. J. (1984). Genus I Pseudomonas. In N. R. Krieg & J. G. Holt (Eds.), Bergey’s manual of determinative bacteriology (pp. 141–199). Baltimore: Williams and Wilkins Co..Google Scholar
  56. Palleroni, N. J. (1993). Pseudomonas classification. A new case history in the taxonomy of Gram-negative bacteria. Antonie Van Leeunhoek, 64, 231–251.  https://doi.org/10.1007/bf00873084.Google Scholar
  57. Panigrahi, S., & Badveli, U. (2013). Screening, isolation and quantification of PHB-producing soil bacteria. International Journal of Engineering and Science Invention, 2(9), 1–6.Google Scholar
  58. Peer, R., Kuik, A. J., Rattink, H., & Schippers, B. (1990). Control of Fusarium wilt in carnation grown on rock wool by Pseudomonas sp. strain WCS417r and by Fe-Eddha Neth. Journal of Plant Pathology.  https://doi.org/10.1007/bf01974251.
  59. Pepper, I. L., & Gerba, C. P. (2004). Environmental microbiology: A laboratory manual. Elsevier: Academic Press.Google Scholar
  60. Popovic, T., Starovic, M., Aleksic, G., Zivkovic, S., Josic, D., Ignjatov, M., & Milovanovic, P. (2012). Response of different beans against common bacterial blight disease caused by Xanthomonas axonopodis pv. phaseoli. Bulgarian Journal of Agricultural Science, 18(5), 701–707.Google Scholar
  61. Radzki, W., Gutierrez Manero, F. J., Algar, E., Lucas Garcia, J. A., Garcia-Villaraco, A., & Ramos, S. B. (2013). Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 104, 321–330.  https://doi.org/10.1007/s10482-013-9954-9.Google Scholar
  62. Reetha, S., Selvakumar, G., Bhuvaneswari, G., Thamizhiniyan, P., & Ravimycin, T. (2014). Screening of cellulase and pectinase by using Pseudomonas fluorescens and Bacillus subtilis. International Letters of Natural Sciences, 13, 75–80.  https://doi.org/10.18052/www.scipress.com/ilns.13.75.Google Scholar
  63. Rhodes, M. E. (1959). The characterization of Pseudomonas fluorescens. Journal of General Microbiology, 21, 221–263.  https://doi.org/10.1099/00221287-21-1-221.Google Scholar
  64. Saettler, A. W., Schaad, N. W., & Roth, D. A. (1989). Detection of bacteria in seeds and other planting material. Saint Paul: The American Phytopathological Society.Google Scholar
  65. Schippers, B., Bakker, A., Bakker, P., & Van Peer, R. (1990). Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant and Soil, 129, 75–83.  https://doi.org/10.1007/bf00011693.Google Scholar
  66. Shweta, B., Maheshwari, D. K., Dubey, R. C., Arora, D. S., Bajpai, V. K., & Kang, S. C. (2008). Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.). Journal of Microbiology and Biotechnology, 18(9), 1578–1583.Google Scholar
  67. Silué, S., Jacquemin, J., & Baudoin, J. (2010). Utilisation des mutations induites pour l'étude de l'embryogenèse chez le haricot Phaseolus vulgaris L. et deux plantes modèles, Arabidopsis thaliana (L.) Heynh. et Zea mays. Biotechnology, Agronomy, Society and Environment, 15(1), 195–205.Google Scholar
  68. Silva, H. S. A., da Silva Romeiro, R., Macagnan, D., de Almeida Halfeld-Vieira, B., Pereira, M. C. B., & Mounteer, A. (2004). Rhizobacterial induction of systemic resistance in tomato plants: Non-specific protection and increase in enzyme activities. Biological Control, 29(2), 288–295.Google Scholar
  69. Skathivel, N., & Gnanamanickam, S. S. (1987). Evaluation of P. fluorescens for suppression of sheath rot disease and for enhancement of grain yield in rice, Oriza sativa. L. Applied and Environmental Microbiology, 53(1987), 2036–2059.Google Scholar
  70. Sutra, L., Risède, J. M., & Gardan, L. (2000). Isolation of fluorescent pseudomonads from the rhizosphere of banana plants antagonistic towards root necrosing fungi. Letters in Applied Microbiology, 31, 289–293.  https://doi.org/10.1046/j.1472-765x.2000.00816.x.Google Scholar
  71. Touraev, A. & Jones, J. (2015). Plant biotic stresses and ResistanceMechanisms II. International Conference. Fitotron. http://viscea.org/wp-content/uploads/2017/05/Abst-BOOK-PBSRM.pdf. Accessed 1 September 2017.
  72. Urruty, N. (2017) Robustesse du rendement du blé tendre face aux perturbations abiotiques et biotiques: cadre méthodologique et leviers agronomiques. University of Poitiers, France. http://www.theses.fr/2017POIT2253. Acceced 01/04/2018.
  73. Vacheron, J., Desbrosses, G., Bouffaud, M. L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dyé, F., & Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4, 1–19.Google Scholar
  74. Vale, M., Seldin, L., Araújo, F. F., Lima, R., & Maheshwari, D. K. (2010). Plant growth and health promoting bacteria. In D. K. Maheshwari (Ed.), Plant growth promoting rhizobacteria: Fundamentals and applications (pp. 21–43). Berlin: Springer.Google Scholar
  75. Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.  https://doi.org/10.1023/A:1026037216893.Google Scholar
  76. Wei, G., Kloepper, J. W., & Tuzun, S. (1996). Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology, 86, 221.  https://doi.org/10.1094/phyto-86-221.Google Scholar
  77. William, S., Feil, H., & Copeland, A. (2012). Bacterial genomic DNA isolation using CTAB. Sigma, 50, 6876.Google Scholar
  78. Yeole, R. D., Dave, B. P., & Dube, H. C. (2001). Siderophores production by fluorescent pseudomonads colonizing roots of certain crop plants. Indian Journal of Experimental Biology, 39(5), 464–468.Google Scholar
  79. Zak, J. C., Willing, M. R., Moorhead, D. L., & Wildman, H. G. (1994). Functional diversity of microbial communities: A quantitative approach. Soil Biology and Biochemistry, 26, 1101–1108.  https://doi.org/10.1016/0038-0717(94)90131-7.Google Scholar
  80. Zanatta, Z. G., Moura, A. B., Maia, L. C., & Santos, A. S. D. (2007). Bioassay for selection of biocontroller bacteria against bean common blight (Xanthomonas axonopodis pv. phaseoli). Brazilian Journal of Microbiology.  https://doi.org/10.1590/s1517-83822007000300024.

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Slimane Mokrani
    • 1
    • 2
  • Abdelwahab Rai
    • 3
  • Lakhder Belabid
    • 2
  • Ameur Cherif
    • 4
  • Hanane Cherif
    • 4
  • Mouna Mahjoubi
    • 4
  • Elhafid Nabti
    • 1
    Email author
  1. 1.Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la VieUniversité de BejaiaBejaiaAlgeria
  2. 2.Department Agronomy, Laboratory of Research on Biological Systems and Geomantic (L.R.S.B.G)University of Mustapha StumbouliMascaraAlgeria
  3. 3.Faculté des Sciences de la Nature et de la Vie et des Sciences de la TerreUniversité Akli Mohand OulhadjBouiraAlgeria
  4. 4.Higher Institute for Biotechnology, Laboratory of Biotechnology and Bio-Geo Resources Valorization (L.B.B.G.R.V)University of ManoubaArianaTunisia

Personalised recommendations