Advertisement

Trichoderma asperellum isolated from African maize seed directly inhibits Fusarium verticillioides growth in vitro

  • Amy Veenstra
  • M. Suhail Rafudeen
  • Shane L. Murray
Article
  • 48 Downloads

Abstract

Maize is a globally important crop that is affected by fungal diseases causing yield losses annually. One fungus, Fusarium verticillioides, causes the disease Fusarium Ear Rot (FER), which reduces grain quality and produces mycotoxins called fumonisins that are harmful to animals and humans. As chemical fungicides are expensive and have negative environmental effects, the use of biological control agents (BCAs) has become favourable in recent years. A commonly used fungal BCA is Trichoderma spp., which has been effective in reducing disease incidence as well as enhancing crop growth. In this study, T. asperellum was isolated from an African maize line and was shown to significantly inhibit growth of F. verticillioides in an in vitro competition assay.

Keywords

Trichoderma asperellum Fusarium verticillioides Maize 

Notes

Acknowledgements

This study was funded in South Africa by The Maize Trust and the National Research Foundation. We would like to thank Jean Ntuli for providing seeds.

Compliance with ethical standards

This research did not involve human participants and/or animals.

Conflict of interests

The authors declare no conflict of interests.

References

  1. Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249–260.PubMedGoogle Scholar
  2. Chandra Nayaka, S., Niranjana, S. R., Uday Shankar, A. C., Niranjan Raj, S., Reddy, M. S., Prakash, H. S., & Mortensen, C. N. (2010). Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Archives of Phytopathology and Plant Protection, 43(3), 264–282.  https://doi.org/10.1080/03235400701803879.CrossRefGoogle Scholar
  3. Charoenrak, P., & Chamswarng, C. (2016). Efficacies of wettable pellet and fresh culture of Trichoderma asperellum biocontrol products in growth promoting and reducing dirty panicles of rice. Agriculture and Natural Resources, 50(4), 243–249.  https://doi.org/10.1016/j.anres.2016.04.001.CrossRefGoogle Scholar
  4. Chen, L.-H., Zhang, J., Shao, X.-H., Wang, S.-S., Miao, Q.-S., Mao, X.-Y., et al. (2015). Development and evaluation of Trichoderma asperellum preparation for control of sheath blight of rice (Oryza sativa L.). Biocontrol Science and Technology, 25(3), 316–328.  https://doi.org/10.1080/09583157.2014.977225.CrossRefGoogle Scholar
  5. Colombo, C., Palumbo, G., He, J.-Z., Pinton, R., & Cesco, S. (2014). Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments, 14(3), 538–548.  https://doi.org/10.1007/s11368-013-0814-z.CrossRefGoogle Scholar
  6. de França, S. K. S., Cardoso, A. F., Lustosa, D. C., Ramos, E. M. L. S., de Filippi, M. C. C., & da Silva, G. B. (2015). Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agronomy for Sustainable Development, 35(1), 317–324.  https://doi.org/10.1007/s13593-014-0244-3.CrossRefGoogle Scholar
  7. El Komy, M. H., Saleh, A. A., Eranthodi, A., & Molan, Y. Y. (2015). Characterization of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt. The Plant Pathology Journal, 31(1), 50–60.  https://doi.org/10.5423/PPJ.OA.09.2014.0087.CrossRefPubMedGoogle Scholar
  8. Harman, G. E., Petzoldt, R., Comis, A., & Chen, J. (2004a). Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology, 94(2), 147–153.CrossRefPubMedGoogle Scholar
  9. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004b). Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56.  https://doi.org/10.1038/nrmicro797.CrossRefPubMedGoogle Scholar
  10. Harrison, L. R., Colvin, B. M., Greene, J. T., Newman, L. E., & Cole Jr., J. R. (1990). Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. Journal of Veterinary Diagnostic Investigation, 2(3), 217–221.CrossRefPubMedGoogle Scholar
  11. Heydari, A., & Pessarakli, M. (2010). A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists. Journal of Biological Sciences, 10(4), 273–290.CrossRefGoogle Scholar
  12. Korsman, J., Meisel, B., Kloppers R. J., Crampton, B. G., & Berger, D. K. (2012). Quantitative phenotyping of grey leaf spot disease in maize using real-time PCR. European Journal of Plant Pathology, 133(2), 461–471.CrossRefGoogle Scholar
  13. Leelavathi, M. S., Vani, L., & Reena, P. (2014). Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. International Journal of Current Microbiology and Applied Sciences, 3, 96–103.Google Scholar
  14. Luongo, L., Galli, M., Corazza, L., Meekes, E., Haas, L. D., Van Der Plas, C. L., & Köhl, J. (2005). Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol Science and Technology, 15(3), 229–242.  https://doi.org/10.1080/09583150400016852.CrossRefGoogle Scholar
  15. Saravanakumar, K., Li, Y., Yu, C., Wang, Q., Wang, M., Sun, J., et al. (2017). Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Scientific Reports, 7(1).  https://doi.org/10.1038/s41598-017-01680-w.
  16. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Sobowale, A. A., Cardwell, K. F., Odebode, A. C., Bandyopadhyay, R., & Jonathan, S. G. (2005). Growth inhibition of Fusarium verticillioides (Sacc.) Nirenberg by isolates of Trichoderma pseudokoningii strains from maize plant parts and its rhizosphere. Journal of Plant Protection Research, 45(4), 249–266.Google Scholar
  18. Sobowale, A. A., Odebode, A. C., Cardwell, K. F., Bandyopadhyay, R., & Jonathan, S. G. (2010). Antagonistic potential of Trichoderma longibrachiatum and T. hamatum resident on maize (Zea mays) plant against Fusarium verticillioides (Nirenberg) isolated from rotting maize stem. Archives of Phytopathology and Plant Protection, 43(8), 744–753.  https://doi.org/10.1080/03235400802175904.CrossRefGoogle Scholar
  19. Steyaert, J. M., Weld, R. J., & Stewart, A. (2010). Isolate-specific conidiation in Trichoderma in response to different nitrogen sources. Fungal Biology, 114(2–3), 179–188.  https://doi.org/10.1016/j.funbio.2009.12.002.CrossRefPubMedGoogle Scholar
  20. Strange, R. N., & Scott, P. R. (2005). Plant Disease: A Threat to Global Food Security. Annual Review of Phytopathology, 43(1), 83–116.  https://doi.org/10.1146/annurev.phyto.43.113004.133839.CrossRefPubMedGoogle Scholar
  21. Sun, G., Wang, S., Hu, X., Su, J., Huang, T., Yu, J., et al. (2007). Fumonisin B1 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China. Food Additives and Contaminants, 24(2), 181–185.  https://doi.org/10.1080/02652030601013471.CrossRefPubMedGoogle Scholar
  22. Sydenham, E. W., Thiel, P. G., Marasas, W. F., Shephard, G. S., Van Schalkwyk, D. J., & Koch, K. R. (1990). Natural occurrence of some Fusarium mycotoxins in corn from low and high esophageal cancer prevalence areas of the Transkei, Southern Africa. Journal of Agricultural and Food Chemistry, 38(10), 1900–1903.Google Scholar
  23. Thiel, P. G., Marasas, W. F., Sydenham, E. W., Shephard, G. S., & Gelderblom, W. C. (1992). The implications of naturally occurring levels of fumonisins in corn for human and animal health. Mycopathologia, 117(1–2), 3–9.CrossRefPubMedGoogle Scholar
  24. Tucci, M., Ruocco, M., De Masi, L., De Palma, M., & Lorito, M. (2011). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype: Plant genotype-Trichoderma interaction. Molecular Plant Pathology, 12(4), 341–354.  https://doi.org/10.1111/j.1364-3703.2010.00674.x.CrossRefPubMedGoogle Scholar
  25. Veenstra, A. L. (2017). Evaluation of southern African maize germplasm for phytoalexin accumulation following inoculation by Fusarium verticillioides (Master of Science thesis). University of Cape Town, Cape Town.Google Scholar
  26. Vos, C. M. F., De Cremer, K., Cammue, B. P. A., & De Coninck, B. (2015). The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease: Trichoderma biocontrol of Botrytis cinerea disease. Molecular Plant Pathology, 16(4), 400–412.  https://doi.org/10.1111/mpp.12189.
  27. Wagacha, J. M., & Muthomi, J. W. (2008). Mycotoxin problem in Africa: Current status, implications to food safety and health and possible management strategies. International Journal of Food Microbiology, 124(1), 1–12.  https://doi.org/10.1016/j.ijfoodmicro.2008.01.008.CrossRefPubMedGoogle Scholar
  28. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications, 18(1), 315–322.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Amy Veenstra
    • 1
  • M. Suhail Rafudeen
    • 1
  • Shane L. Murray
    • 1
    • 2
  1. 1.Department of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
  2. 2.Center for Proteomic and Genomic Research, ObservatoryCape TownSouth Africa

Personalised recommendations