Abstract
In 2011, patches of lodged plants of Helianthus annuus (commercial sunflower) with stem lesions were observed in a commercial crop at Kingsthorpe, Queensland, Australia. Several species of Diaporthe were consistently isolated from the lesions. Diaporthe novem was identified by DNA sequence analysis. In following surveys, Diaporthe novem was found to be associated with other crop species including Cicer arietinum (chickpea), Glycine max (soybean), Lupinus alba (lupin), Sorghum bicolor (sorghum) Vicia faba (faba bean) and Vigna radiata (mungbean), and with the weed species Datura stramonium (common thornapple), Helianthus annuus (wild-type sunflower), Malva parviflora (small flowered mallow), Rapistrum rugosum (turnip weed), Sambucus gaudichaudiana (wild elderberry), Sisymbrium orientale (indian hedge mustard), Sonchus oleraceus (sowthistle), Verbena sp., Vicia sativa (common vetch), and Xanthium strumarium (noogoora burr). In pathogenicity tests, isolates of D. novem from sunflower were highly virulent when re-inoculated on commercial sunflower varieties. This study has identified D. novem as a frequent cause of stem canker of sunflower in the eastern cropping areas of Australia, and extends the known host range of D. novem.
This is a preview of subscription content, access via your institution.






References
van der Aa, H. A., Noordeloos, M. E., & de Gruyter, J. (1990). Species concepts in some larger genera of the Coelomycetes. Studies in Mycology, 32, 3–19.
Bureau of Meteorology. (2017a). Climate statistics for Australian locations; Macedon forestry. http://www.bom.gov.au/climate/averages/tables/cw_087036.shtml. Accessed 21 November 2017.
Bureau of Meteorology. (2017b). Climate statistics for Australian locations; Moree aero. http://www.bom.gov.au/climate/averages/tables/cw_053115.shtml. Accessed 21 November 2017.
Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91, 553–556.
Delaye, L., García-Guzmán, G., & Heil, M. (2013). Endophytes versus biotrophic and necrotrophic pathogens – Are fungal lifestyles evolutionary traits? Fungal Diversity, 60, 125–135.
Diaz, G. A., Latorre, B. A., Jara, S., Ferrada, E., Naranjo, P., Rodriguez, J., & Zoffoli, J. P. (2014). First record of Diaporthe novem causing post-harvest rot of kiwifruit during controlled atmosphere storage in Chile. Plant Disease, 98, 1274.
Dissanayake, A. J., Camporesi, E., Hyde, K. D., Zhang, W., Yan, J. Y., & Li, X. H. (2017). Molecular phylogenetic analysis reveals seven new Diaporthe species from Italy. Mycosphere, 8, 853–877.
Fernandes, E. G., Pereira, O. L., da Silva, C. C., Bento, C. B. P., & de Queiroz, M. V. (2015). Diversity of endophytic fungi on Glycine max. Microbiological Research, 181, 84–92.
Gao, Y., Liu, F., & Cai, L. (2016). Unravelling Diaporthe species associated with Camellia. Systematics and Biodiversity, 14, 102–117.
Gao, Y., Liu, F., Duan, W., Crous, P. W., & Cai, L. (2017). Diaporthe is paraphyletic. IMA Fungus, 8, 153–187.
Gomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenwald, J. Z., & Crous, P. W. (2013). Diaporthe: A genus of endophytic, saprobic and plant pathogenic fungi. Persoonia, 31, 1–41.
Guarnaccia, V., & Crous, P. W. (2017). Emerging citrus diseases in Europe caused by species of Diaporthe. IMAFungus, 8, 317–334.
Huang, F., Udayanga, D., Wang, X., Hou, X., Mei, X., Fu, Y., Hyde, K., & Li, H. (2015). Endophytic Diaporthe associated with citrus: A phylogenetic reassessment with seven new species from China. Fungal Biol-UK., 119, 331–347.
de Hoog, G. S., & Gerrits van den Ende, A. H. (1998). Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses, 41, 183–189.
International Rules for Seed Testing. (2014). ISTA validated method. Annex to Chapter 7. Seed health testing methods. 7–016. Acidified PDA method for detection of Phomopsis Complex on Soybean. https://www.seedtest.org/upload/cms/user/SH-07-016-2014.pdf. Accessed 21 November 2017.
Kulik, M.M., & Sinclair, J.B. (1999). Pod and stem blight. In; compendium of soybean diseases, 4th edition. In G.L. Hartman, J.B. Sinclair & J.C. Rupe (Eds) (pp. 32-33). St. Paul: APS press.
Lawrence, D. P., Travadon, R., & Baumgartner, K. (2015). Diversity of Diaporthe species associated with wood cankers of fruit and nut crops of northern California. Mycologia, 107, 926–940.
Malcolm, G. M., Kuldau, G. A., Gugino, B. K., & del Mar Jiménez-Gasco, M. (2013). Hidden host plant associations of soilborne fungal pathogens: An ecological perspective. Phytopathology, 103, 538–544. https://doi.org/10.1094/PHYTO-08-12-0192-LE.
Masirevic, S., & Gulya, T. J. (1992). Sclerotinia and Phomopsis – Two devastating sunflower pathogens. Field Crops Research, 30, 271–300.
Mathew, F. M., Alananbeh, K. M., Jordahl, J. G., Myer, S. M., Castlebury, L. A., Gulya, T. J., & Markell, S. G. (2015). Phomopsis stem canker: A reemerging threat to sunflower (Helianthus annuus) in the United States. Phytopathology, 105, 990–997.
Muntañola-Cvetković, M., Mihaljčević, M., & Petrov, M. (1981). On the identity of the causative agent of a serious Phomopsis-Diaporthe disease in sunflower plants. Nova Hedwigia, 34, 417–435.
Muralli, T. S., Suryanarayanan, T. S., & Geeta, R. (2006). Endophytic Phomopsis species: Host range and implications for diversity estimates. Canadian Journal of Microbiology, 52, 673–680.
National Climate Centre. (2011a). An extremely wet December leads to widespread flooding across eastern Australia. Special climate statement 24. Melbourne, Vic: Bureau of Meteorology; 15pp.
National Climate Centre. (2011b). Wettest March on record in Australia. Special Climate Statement 31. Melbourne, Vic: Bureau of Meteorology; 11pp.
O’Donnell, K., Kistler, K., Cigelink, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of bananas: Concordant evidence from nuclear and mitochondrial gene genealogies. P Natl Acad Sci USA., 95, 2044–2049.
Petrović, K.L., Riccioni, M., Vidić, V., Đorđević, S., Balešević-Tubić, V., Dukić, V., & Miladinov, Z. (2016). First records of Diaporthe novem, D. foeniculina and D. rudis associated with soybean seed decay in Serbia. Plant Disease 100, 2324.
Rehner, S. A., & Uecker, F. A. (1994). Nuclear ribosomal internal transcribed spacer phylogeny and host diversity in the coelomycete Phomopsis. Canadian Journal of Botany, 72, 1666–1674.
Rekab, D., del Sorbo, G., Reggio, C., Zoina, A., & Firrao, G. (2004). Polymorphisms in nuclear rDNA and mtDNA revela the polyphyletic nature of isolates of Phomopsis pathogenic to sunflower and a tight monophyletic clade of defined origin. Mycological Research, 108, 393–402.
Santos, J. M., Correia, V. G., & Phillips, A. J. (2010). Primers for mating type diagnosis in Diaporthe and Phomopsis: Their use in teleomorph induction in vitro and biological species definition. Fungal Biology, 114, 255–270.
Santos, J. M., Vrandečić, K., Ć osić, J., Duvnjak, T., & Phillips, A. J. L. (2011). Resolving the Diaporthe species occurring on soybean in Croatia. Persoonia, 27, 9–19.
Schneiter, A. A., & Miller, J. F. (1981). Description of sunflower growth stages. Crop Science, 21, 901–903.
Thompson, S. M., Tan, Y. P., Young, A. J., Neate, S. M., Aitken, E. A. B., & Shivas, R. G. (2011). Stem cankers on sunflower (Helianthus annuus) in Australia reveal a complex of pathogenic Diaporthe (Phomopsis) species. Persoonia, 27, 80–89.
Thompson, S. M., Tan, Y. P., Shivas, R. G., Neate, S. M., Morin, L., Bissett, A., & Aitken, E. A. B. (2015). Green and brown bridges between weeds and crops reveal novel Diaporthe species in Australia. Persoonia, 35, 39–49.
Thompson, S., Young, A., & Shivas, R. G. (2010). Phomopsis stem canker–an emerging disease of Australian sunflowers. In B. George-Jaeggli & D. J. Jordan (Eds.), Proceedings of the 1st Australian summer grains conference, gold coast, Australia, 21st – 24th June 2010. Barton: Grains Research and Development Corporation.
Udayanga, D., Xingzhong, L., McKenzie, E. H. C., Chukeatirote, E., Bahkali, A. H. A., & Hyde, K. D. (2011). The genus Phomopsis: Biology, applications, species concepts and names of common pathogens. Fungal Diversity, 50, 189–225.
Uecker, F. A. (1988). A world list of Phomopsis names with notes on nomenclature, morphology and biology. Mycologia Memoir, 13, 1–231.
Van Niekerk, J. M., Groenwald, J. Z., Farr, D. F., Fourie, P. H., Halleen, F., & Crous, P. W. (2005). Reassessment of Phomopsis species on grapevine. Australas Plant Path., 34, 27–39.
White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A guide to methods and applications (pp. 315–322). San Diego, USA: Academic Press.
Acknowledgements
This work was supported by the Australian Grains Research and Development Corporation under Grants DAQ00154 and DAQ00186 awarded to the Queensland Department of Agriculture and Fisheries, and the University of Southern Queensland. The authors thank Ms. Loretta Serafin (NSW Department of Primary Industries) for assistance with lupin and sunflower samples; Ms. Sara Blake and Ms. Tara Russell (USQ) for technical assistance and Dr. Dean Beasley (Queensland Plant Pathology Herbarium) for advice on specimens.
Sources of funding
This study was funded by the Australian Grains Research and Development Corporation under Grants DAQ00154 and DAQ00186.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Research involving human participants and/or animals
This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Thompson, S.M., Tan, Y.P., Neate, S.M. et al. Diaporthe novem isolated from sunflower (Helianthus annuus) and other crop and weed hosts in Australia. Eur J Plant Pathol 152, 823–831 (2018). https://doi.org/10.1007/s10658-018-1515-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10658-018-1515-7
Keywords
- Chickpea
- Disease
- Faba bean
- Lupin
- Mungbean
- Pathogenicity
- Phomopsis
- Sorghum
- Soybean
- Weed diseases