Skip to main content
Log in

Real-time PCR, a great tool for fast identification, sensitive detection and quantification of important plant-parasitic nematodes

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Plant-parasitic nematodes can cause significant damage to agricultural crops and forests worldwide, resulting in major economic losses. Some nematode species do not occur in all areas and are regulated as quarantine organisms. To avoid introduction and spread of these organisms, fast, simple and reliable detection and identification methods are needed, that help plant diagnostic services such as reference centres or national plant protection organizations (NPPOs) to rapidly identify suspicious nematodes. Real-time PCR is one of the fastest, most sensitive and reliable methods to fulfil this task. It is a DNA-based method that is easy to learn with the only requirement of having a specific thermocycler (Real-time Platform) and the appropriate chemistry. Real-time PCR provides very sensitive detection and species-specific identification with the potential to quantify target organisms if required. Following DNA extraction, results can be seen in 1–3 h and management decisions applied. Real-time PCR can be used for high-throughput analysis of many samples and in some cases for multiplexing, allowing for identification of more than one species in a single reaction. Over the past 15 years, real-time PCR methods have been developed for the main plant-parasitic nematodes, in particular the regulated species. This paper reviews the achievements in plant nematology diagnostics using real-time PCR as the method of choice for fast and reliable detection, identification and even quantification of plant parasitic nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, M. A. M., Phillips, M. S., & Blok, V. C. (2007). Molecular diagnostic key for identification of single juveniles of seven common and economically important species of root-knot nematode (Meloidogyne spp.). Plant Pathology, 56, 190–197.

    Article  CAS  Google Scholar 

  • Agudelo, P., Lewis, S. A., & Fortnum, B. A. (2011). Validation of a real-time polymerase chain reaction assay for the identification of Meloidogyne arenaria. Plant Disease, 95, 835–838.

    Article  CAS  Google Scholar 

  • Ahmed, M., Sapp, M., Prior, T., Karssen, G., & Back, M. A. (2016). Technological advancements and their importance for nematode identification. The Soil, 2, 257–270.

    Article  CAS  Google Scholar 

  • Anonymous. (2013). EPPO standard PM 7/119 (1). Nematode extraction. EPPO Bulletin, 43, 471–495.

    Article  Google Scholar 

  • Anonymous. (2016a). EPPO standard PM 7/41 (3). Meloidogyne chitwoodi and Meloidogyne fallax. EPPO Bulletin, 46, 171–189.

    Article  Google Scholar 

  • Anonymous. (2016b). EPPO standard PM 7/103 (2). Meloidogyne enterolobii. EPPO Bulletin, 46, 190–201.

    Article  Google Scholar 

  • Berry, S. D., Fargette, M., Spaull, V. W., Morand, S., & Cadet, P. (2008). Detection and quantification of root-knot nematode (Meloidogyne javanica), lesion nematode (Pratylenchus zeae) and dagger nematode (Xiphinema elongatum) parasites of sugarcane using real-time PCR. Molecular and Cellular Probes, 22, 168–176.

    Article  PubMed  CAS  Google Scholar 

  • Blok, V. C. & Powers, T.O. (2009). Biochemical and Molecular Identification. CAB International. Root-knot Nematodes (eds. R.N. Perry, M. Moens and J. L. Starr), 4, 98–118.

  • Bonants, P., Edema, M., & Robert, V. (2013). Q-bank, a database with information for identification of plant quarantine plant pest and diseases. EPPO Bulletin, 43, 211–215.

    Article  Google Scholar 

  • Boonham, N., Glover, R., Tomlinson, J., & Mumford, R. (2008). Exploiting generic platform technologies for the detection and identification of plant pathogens. European Journal of Plant Pathology, 121, 355–363.

    Article  CAS  Google Scholar 

  • Braun-Kiewnick, A., Viaene, N., Folcher, L., Ollivier, F., Anthoine, G., Niere, B., Sapp, M., van de Vossenberg, B., Toktay, H., & Kiewnick, S. (2016). Assessment of a new qPCR tool for the detection and identification of the root-knot nematode Meloidogyne enterolobii by an international test performance study. European Journal of Plant Pathology, 144, 97–108.

    Article  CAS  Google Scholar 

  • Cao, A. X., Liu, X. Z., Zhu, S. F., & Lu, B. S. (2005). Detection of the pinewood nematode, Bursaphelenchus xylophilus, using a real time polymerase chain reaction assay. Phytopathology, 95, 566–571.

    Article  PubMed  CAS  Google Scholar 

  • Castagnone-Sereno, P. (2012). Meloidogyne enterolobii (= M. mayaguensis): Profile of an emerging, highly pathogenic, root-knot nematode species. Nematology, 14, 133–138.

    Article  Google Scholar 

  • Castagnone-Sereno, P., Vanlerberghe-Masutti, F., & Leroy, F. (1994). Genetic polymorphism between and within Meloidogyne species detected with RAPD markers. Genome, 37, 904–909.

    Article  PubMed  CAS  Google Scholar 

  • Castagnone-Sereno, P., Danchin, E. G. J., Perfus-Barbeoch, L., & Abad, P. (2013). Diversity and evolution of root-knot nematodes, genus Meloidogyne: New insights from the genomic era. Annual Review of Phytopathology, 51, 203–220.

    Article  PubMed  CAS  Google Scholar 

  • Castillo, P. & Vovlas, N. (2007). Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, biology, pathogenicity and management. Nematology Monographs and Perspectives 6 (Series Eds: Hunt, D. J. and Perry, R. N.). Leiden, The Netherlands, Brill.

  • Davies, K. G., Curtis, R. H., & Evans, K. (1996). Serologically based diagnostic and quantification tests for nematodes. Pesticide Science, 47, 81–87.

    Article  Google Scholar 

  • De Weerdt, M., Kox, L., Waeyenberge, L., Viaene, N., & Zijlstra, C. (2011). A real-time PCR assay to identify Meloidogyne minor. Journal of Phytopathology, 159, 80–84.

    Article  CAS  Google Scholar 

  • Den Nijs, L., & Van den Berg, W. (2012). The added value of proficiency tests: Choosing the proper method for extracting Meloidogyne second-stage juveniles from soil. Nematology, 15, 143–151.

    Article  Google Scholar 

  • Elling, A. (2013). Major emerging problems with minor Meloidogyne species. Phytopathology, 103, 1092–1102.

    Article  PubMed  Google Scholar 

  • Esbenshade, P., & Triantaphyllou, A. (1990). Isozyme phenotypes for the identification of Meloidogyne species. Journal of Nematology, 22, 10–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ferris, V., Ferris, J., Faghihi, J., & Ireholm, A. (1994). Comparisons of isolates of Heterodera avenae using 2-D PAGE protein patterns and ribosomal DNA. Journal of Nematology, 26, 144–151.

    PubMed  PubMed Central  CAS  Google Scholar 

  • François, C., Castagnone, C., Boonham, N., Tomlinson, J., Lawson, R., Hockland, S., Quill, J., Vieira, P., Mota, M., & Castagnone-Sereno, P. (2007). Satellite DNA as a target for TaqMan real-time PCR detection of the pinewood nematode, Bursaphelenchus xylophilus. Molecular Plant Pathology, 8, 803–809.

    Article  PubMed  Google Scholar 

  • Gamel, S., Letort, A., Fouville, D., Folcher, L., & Grenier, E. (2017). Development and validation of real-time PCR assays based on novel molecular markers for the simultaneous detection and identification of Globodera pallida, G. rostochiensis and Heterodera schachtii. Nematology, 19, 789–804.

    Article  Google Scholar 

  • Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., Bakker, J., & Helder, J. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution, 23, 1792–1800.

    Article  PubMed  CAS  Google Scholar 

  • Holterman, M., Karssen, G., van den Elsen, S., van Megen, H., Bakker, J., & Helder, H. (2009). Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology, 99, 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Holterman, M. H. M., Frey, J.-E., Helder, H., Mooyman, P. J. W., Rybarczyk, K. D., & Kiewnick, S. (2011). Barcoding quarantine nematodes and their close relatives: An update on the QBOL-project. Communications in Agricultural and Applied Biological Sciences, 76, 403–407.

    PubMed  CAS  Google Scholar 

  • Huang, D., & Yan, G. (2017). Specific detection of the root-lesion nematode Pratylenchus scribneri using conventional and real-time PCR. Plant Disease, 101, 359–365.

    Article  CAS  Google Scholar 

  • Hunt, D. J., & Handoo, Z. A. (2009). Taxonomy, identification and principal species. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 55–97). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Ibrahim, S., Davies, K., & Perry, R. (1996). Identification of the root-knot nematode, Meloidogyne incognita, using monoclonal antibodies raised to non-specific esterases. Physiological and Molecular Plant Pathology, 49, 79–88.

    Article  CAS  Google Scholar 

  • Jeszke, A., Dobosz, R., & Obrepalska-Steplowska, A. (2015). A fast and sensitive method for the simultaneous identification of three important nematode species of the genus Ditylenchus. Pest Management Science, 71, 243–249.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. T., Haegeman, A., Danchin, E. G. J., Gaur, H. S., Helder, J., Jones, M. G. K., Kikuchi, T., Manzanilla-Lopez, R., Palomares-Rius, J. E., Wesemael, W. M. L., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961.

    Article  PubMed  Google Scholar 

  • Karssen, G., Van Hoenselaar, T., Verkerk-Bakker, B., & Janssen, R. (1995). Species identification of cyst and root-knot nematodes from potato by electrophoresis of individual females. Electrophoresis, 16, 105–109.

    Article  PubMed  CAS  Google Scholar 

  • Kiewnick, S., Wolf, S., Willareth, M., & Frey, J.-E. (2013). Identification of the tropical root-knot nematode species Meloidogyne incognita, M. javanica and M. arenaria using a multiplex PCR assay. Nematology, 15, 891–894.

    Google Scholar 

  • Kiewnick, S., Holterman, M., van den Elsen, S., van Megen, H., Frey, J.-E., & Helder, H. (2014). Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. European Journal of Plant Pathology, 140, 97–110.

    Article  CAS  Google Scholar 

  • Kiewnick, S., Frey, J.-E., & Braun-Kiewnick, A. (2015). Development and validation of LNA-based quantitative real-time PCR assays for detection and identification of the root-knot nematode Meloidogyne enterolobii in complex DNA backgrounds. Phytopathology, 105, 1245–1249.

    Article  PubMed  CAS  Google Scholar 

  • Kiewnick, S., Bühlmann, A., & Frey, J.-E. (2016). DNA-barcoding of invertebrate plant pests. In N. Boonham, J. Tomlinson, & R. Mumford (Eds.), Molecular methods in plant disease diagnostics (p. 98). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Kikuchi, T., Aikawa, T., Oeda, Y., Karim, N., & Kanzaki, N. (2009). A rapid and precise diagnostic method for detecting the pinewood nematode Bursaphelenchus xylophilus by loop-mediated isothermal amplification. Phytopathology, 99, 1365–1369.

    Article  PubMed  CAS  Google Scholar 

  • Koyama, Y., Toyota, K., Miyamaru, N., Yoshida, K., & Uesugi, K. (2016). Development of a quantification method with real-time PCR for three Pratylenchus species causing damage to chrysanthemum in Japan. Nematology, 18, 687–695.

    Article  Google Scholar 

  • Kumari, S., & Subbotin, S. A. (2012). Molecular characterization and diagnostic of stubby root and virus vector nematodes of the family Trichodoridae (Nematode: Triplonchida) using ribosomal DNA genes. Plant Pathology, 61, 1021–1031.

    Article  CAS  Google Scholar 

  • Lambert, K., & Bekal, S. (2002). Introduction to plant parasitic nematodes. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2002-1218-01.

  • Leal, I., Green, M., Allen, E., Humbke, L., & Rott, M. (2007). Application of a real-time PCR method for the detection of pine wood nematode, Bursaphelenchus xylophilus, in wood samples from lodgepole pine. Nematology, 9, 351–362.

    Article  CAS  Google Scholar 

  • Leal, I., Allen, E., Foord, B., Anema, J., Reisle, C., Uzunovic, A., Varga, A., & James, D. (2015). Detection of living Bursaphelenchus xylophilus in wood, using reverse transcriptase loop-mediated isothermal amplification (RT-LAMP). Forest Pathology, 45, 134–148.

    Article  Google Scholar 

  • Lin, B. R., Wang, H. H., Zhuo, K., & Liao, J. L. (2016). Loop-mediated isothermal amplification for the detection of Tylenchulus semipenetrans in soil. Plant Disease, 100, 877–883.

    Article  CAS  Google Scholar 

  • Liu, X., Wang, H., Lin, B., Tao, Y., Zhuo, K., & Liao, J. (2017). Loop-mediated isothermal amplification based on the mitochondrial COI region to detect Pratylenchus zeae. European Journal of Plant Pathology, 148, 435–446.

    Article  CAS  Google Scholar 

  • Madani, M., Subbotin, S. A., & Moens, M. (2005). Quantitative detection of the potato cyst nematode Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using real-time PCR with SYBR green I dye. Molecular and Cellular Probes, 19, 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Madani, M., Ward, L. J., & De Boer, S. H. (2008). Multiplex real-time polymerase chain reaction for identifying potato cyst nematodes, Globodera pallida and Globodera rostochiensis, and the tobacco cyst nematode, Globodera tabacum. Canadian Journal of Plant Pathology, 30, 554–564.

    Article  CAS  Google Scholar 

  • Madani, M., Ward, L. J., & De Boer, S. H. (2011). Hsp90 gene, an additional target for discrimination between the potato cyst nematodes, Globodera rostochiensis and G. pallida, and the related species, G. tabacum tabacum. European Journal of Plant Pathology, 130, 271–285.

    Article  Google Scholar 

  • Marché, L., Valette, S., Grenier, E., & Mugniéry, D. (2001). Intra-species DNA polymorphism in the tobacco cyst nematode complex (Globodera tabacum) using AFLP. Genome, 44, 941–946.

    PubMed  Google Scholar 

  • Meng, Q. P., Long, H., & Xu, J. H. (2004). PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. javanica, and M. arenaria. Acta Phytopathologica Sinica, 34, 204–210.

    Google Scholar 

  • Mokrini, F., Waeyenberge, L., Viaene, N., Andaloussi, F. A., & Moens, M. (2013). Quantitative detection of the root-lesion nematode, Pratylenchus penetrans, using qPCR. European Journal of Plant Pathology, 137, 403–413.

    Article  CAS  Google Scholar 

  • Mokrini, F., Waeyenberge, L., Viaene, N., Andaloussi, F. A., & Moens, M. (2014). The β-1,4-endoglucanase gene is suitable for the molecular quantification of the root-lesion nematode, Pratylenchus thornei. Nematology, 16, 789–796.

    Article  Google Scholar 

  • Nakhla, M. K., Owens, K. J., Li, W., & Wei, G. (2010). Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes. Plant Disease, 94, 959–965.

    Article  CAS  Google Scholar 

  • Niu, J. H., Jian, H., Guo, Q. X., Chen, C. L., Wang, X. Y., Liu, Q., & Guo, Y. D. (2012). Evaluation of loop-mediated isothermal amplification (LAMP) assays based on 5S rDNA-IGS2 regions for detecting Meloidogyne enterolobii. Plant Pathology, 61, 809–819.

    Article  CAS  Google Scholar 

  • Notomi, T., Okayama, H., & Masubuchi, H. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, E63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nowaczyk, K., Dobosz, R., Kornobis, S., & Obrepalska-Steplowska, A. (2008). TaqMan real-time PCR-based approach for differentiation between Globodera rostochiensis (golden nematode) and Globodera artemisiae species. Parasitology Research, 103, 577–581.

    Article  PubMed  Google Scholar 

  • Oliveira, C. M. G. O., Blok, V. B., Neilson, R. N., Mróz, T. M., & Roberts, D. R. (2017). Hydrolysis probe-based PCR for detection of Pratylenchus crenatus, P. neglectus and P. penetrans. Nematology, 19, 81–91.

    Article  Google Scholar 

  • Papayiannis, L. C., Christoforou, M., Markou, Y. M., & Tsaltas, D. (2013). Molecular typing of cyst-forming nematodes Globodera pallida and G. rostochiensis, using real-time PCR and evaluation of five methods for template preparation. Journal of Phytopathology, 161, 459–469.

    Article  CAS  Google Scholar 

  • Peng, H., Peng, D. L., Hu, X. Q., He, X. F., Wang, Q., Huang, W. K., & He, W. T. (2012). Loop-mediated isothermal amplification for rapid and precise detection of the burrowing nematode, Radopholus similis, directly from diseased plant tissues. Nematology, 14, 977–986.

    Article  CAS  Google Scholar 

  • Perera, M. R., Taylor, S. P., Vanstone, V. A., & Jones, M. G. (2009). Protein biomarkers to distinguish oat and Lucerne races of the stem nematode, Ditylenchus dipsaci, with quarantine significance for Western Australia. Nematology, 11, 555–563.

    Article  CAS  Google Scholar 

  • Postnikova, O. A., Hult, M., Shao, J., Skantar, A., & Nemchinov, L. G. (2015). Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita. PLoS One, 10(2), e0118269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Randig, O., Bongiovanni, M., Carneiro, R., & Castagnone-Sereno, P. (2002). Genetic diversity of root-knot nematodes from Brazil and development of SCAR markers specific for the coffee-damaging species. Genome, 45, 862–870.

    Article  PubMed  CAS  Google Scholar 

  • Reid, A., Kenyon, D. M., Evans, F. F., Mulholland, V., Pickup, J., Blok, V. C., Paterson, A., & Phillips, M. S. (2010). Development of a high-throughput method for the detection and species determination of potato cyst nematodes. In Aspects of Applied Biology, 103, 3rd Symposium on Potato Cyst Nematodes (pp. 11–14). Newport: Harper Adams University College.

  • Reid, A., Evans, F., Mulholland, V., Cole, Y., & Pickup, J. (2015). High-throughput diagnosis of potato cyst nematodes in soil samples. In C. Lacomme (Ed.), Plant pathology: Techniques and protocols (pp. 137–148). New York: Springer. https://doi.org/10.1007/978-1-4939-2620-6_11.

    Chapter  Google Scholar 

  • Rybarczyk-Mydłowska, K., Mooyman, P., van Megen, H., van den Elsen, S., Vervoort, M., Veenhuizen, P., van Doorn, J., Dees, R., Karssen, G., Bakker, J., & Helder, H. (2012). Small subunit ribosomal DNA-based phylogenetic analysis of foliar nematodes (Aphelenchoides spp.) and their quantitative detection in complex DNA backgrounds. Phytopathology, 102, 1153–1160.

    Article  PubMed  Google Scholar 

  • Sasser, J. N. (1990). Plant-parasitic Nematodes the Farmer’s Hidden Enemy (pp. 47–48). Raleigh: North Carolina State University Press.

    Google Scholar 

  • Sayler, R. J., Walker, C., Goggin, F., Agudelo, P., & Kirkpatrick, T. (2012). Conventional PCR detection and real-time PCR quantification of reniform nematodes. Plant Disease, 96, 1757–1762.

    Article  CAS  Google Scholar 

  • Tastet, C., Val, F., Lesage, M., Renault, L., Marché, L., Bossis, M., & Mugniéry, D. (2001). Application of a putative fatty-acid binding protein to discriminate serologically the two European quarantine root-knot nematodes, Meloidogyne chitwoodi and M. fallax, from other Meloidogyne species. European Journal of Plant Pathology, 107, 821–832.

    Article  CAS  Google Scholar 

  • Tigano, M., De Siqueira, K., Castagnone-Sereno, P., Mulet, K., Queiroz, P., Dos Santos, M., & Carneiro, R. (2010). Genetic diversity of the root-knot nematode Meloidogyne enterolobii and development of a SCAR marker for this guava-damaging species. Plant Patholology, 59, 1054–1061.

    Article  CAS  Google Scholar 

  • Tomlinson, J. A., Barker, I., & Boonham, N. (2007). Faster, simpler, more specific methods for improved molecular detection of Phytophthora ramorum in the field. Applied and Environmental Microbiology, 73, 4040–4047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toumi, F., Waeyenberge, L., Viaene, N., Dababat, A. A., Nicol, J. M., Ogbonnaya, F. C., & Moens, M. (2015). Development of qPCR assays for quantitative detection of Heterodera avenae and H. latipons. European Journal of Plant Pathology, 10, 658–681.

    Google Scholar 

  • Trudgill, D. L., & Blok, V. C. (2001). Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annual Review of Phytopathology, 39, 53–77.

    Article  PubMed  CAS  Google Scholar 

  • Van Ghelder, C., Reid, A., Kenyon, D., & Esmenjaud, D. (2015). Development of a real-time PCR method for the detection of the dagger nematodes Xiphinema index, X. diversicaudatum, X. vuittenezi and X. italiae, and for the quantification of X. index numbers. Plant Pathology, 64, 489–500.

    Article  CAS  Google Scholar 

  • Vervoort, M. T. W., Vonk, J. A., Mooijman, P. J. W., Van den Elsen, S. J. J., Van Megen, H. H. B., Veenhuizen, P., Landeweert, R., Bakker, J., Mulder, C., & Helder, J. (2012). SSU ribosomal DNA-based monitoring of nematode assemblages reveals distinct seasonal fluctuations within evolutionary heterogeneous feeding guilds. PLoS One, 7(10), e47555. https://doi.org/10.1371/journal.-phone.0047555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, D. Y.-C., Kumar, S., & Hedges, B. S. (1999). Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proceedings of the Royal Society of London, 266, 163–171.

    Article  CAS  Google Scholar 

  • Wesemael, W. M. L., Viaene, N., & Moens, M. (2011). Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 13, 3–16.

    Article  Google Scholar 

  • Xin, Z., Velten, J. P., Oliver, M. J., & Burke, J. J. (2003). High-throughput DNA extraction method suitable for PCR. BioTechniques, 34, 820–826.

    Article  PubMed  CAS  Google Scholar 

  • Yan, G. P., Smiley, R. W., & Okubara, P. A. (2012). Detection and quantification of Pratylenchus thornei in DNA extracted from soil using real-time PCR. Phytopathology, 102, 14–22.

    Article  PubMed  CAS  Google Scholar 

  • Ye, W. (2011). Development of prime time-real-time PCR for species identification of soybean cyst nematode (Heterodera glycines Ichinohe, 1952) in North Carolina. Journal of Nematology, 44, 284–290.

    Google Scholar 

  • Ye, W., & Giblin-Davis, R. M. (2013). Molecular characterization and development of real-time PCR assay for pine-wood nematode Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae). PLoS One, 8(11), e78804. https://doi.org/10.1371/journal.phone.0078804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zijlstra, C. (2000). Identification of Meloidogyne chitwoodi, M. fallax and M. hapla based on SCAR-PCR: A powerful way of enabling reliable identification of populations or individuals that share common traits. European Journal of Plant Pathology, 106, 283–290.

    Article  CAS  Google Scholar 

  • Zijlstra, C., & Van Hoof, R. A. (2006). A multiplex real-time polymerase chain reaction (TaqMan) assay for the simultaneous detection of Meloidogyne chitwoodi and M. fallax. Phytopathology, 96, 1255–1262.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

No external funding was provided to the authors for preparing this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kiewnick.

Ethics declarations

Conflict of interest

In addition, the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun-Kiewnick, A., Kiewnick, S. Real-time PCR, a great tool for fast identification, sensitive detection and quantification of important plant-parasitic nematodes. Eur J Plant Pathol 152, 271–283 (2018). https://doi.org/10.1007/s10658-018-1487-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1487-7

Keywords

Navigation