Skip to main content

Advertisement

Log in

Cereal diseases caused by Fusarium graminearum: from biology of the pathogen to oxidative burst-related host defense responses

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium graminearum Schwabe (teleomorph: Gibberella zeae) is a destructive fungus, causing economically important diseases such as seedling blight, root and crown rot and head blight on small grain cereals, in particular wheat and barley. It is a devastating phytopathogen, not only due to causing significant yield losses, but also because of contaminating plant tissues with trichothecenes and other types of mycotoxins, which are harmful for human animal health. Several disease management strategies are used to decrease yield losses and mycotoxin production in cereals caused by this pathogenic fungus. Among various disease control methods, use of resistant cultivars could be the most effective way to combat diseases caused by F. graminearum in cereals. However, any plant cultivar with complete resistance against this pathogen was not reported worldwide and only some of the host cultivars with partial resistance against F. graminearum were identified, so far. Therefore, understanding biochemical and cytomolecular aspects of interaction in F. graminearum-cereals pathosystems would be valuable for designing novel management strategies against various diseases caused by this hemibiotrophic fungal pathogen on economically important cereals. This review is focused on biology, pathogenicity, and genetic structure of F. graminearum populations together with the role of reactive oxygen species (ROS) and antioxidant systems in association with plant cell wall in defense responses of cereals, as the main resistance mechanisms against this destructive fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abou Ammar, G., Tryono, R., Döll, K., Karlovsky, P., Deising, H. B., et al. (2013). Identification of ABC transporter genes of fusarium graminearum with roles in azole tolerance and/or virulence. PLoS One, 8(11), e79042. https://doi.org/10.1371/journal.pone.0079042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akinsanmi, O. A., Backhouse, D., Simpfendorfer, S., & Chakraborty, S. (2006). Genetic diversity of Australian Fusarium graminearum and F. pseudograminearum. Plant Pathology, 55(4), 494–504.

    Article  CAS  Google Scholar 

  • Albayrak, G., Yörük, E., Gazdağli, A., & Sharifnabi, B. (2016). Genetic diversity among Fusarium graminearum and F. sulmorum isolates based on ISSR markers. Archives of. Biological Sciences, 68(2), 333–343.

    Google Scholar 

  • Aoki, T., Ward, T. J., Kistler, H. C., & O’Donnell, K. (2012). Systematics, phylogeny and trichothecene mycotoxin potential of Fusarium head blight cereal pathogens. Mycotoxins, 62(2), 91–102.

    Article  CAS  Google Scholar 

  • Arici, S. E., & Koç, N. K. (2010). RAPD-PCR analysis of genetic variation among isolates of Fusarium graminearum and Fusarium culmorum from wheat in Adana Turkey. Pakistan Journal of Biological Sciences, 13(3), 138–142.

    Article  PubMed  CAS  Google Scholar 

  • Astolfi, P., Reynoso, M. M., Ramirez, M. L., Chulze, S. N., Alves, T. C. A., Tessmann, D. J., & Del Ponte, E. M. (2012). Genetic population structure and trichothecene genotypes of Fusarium graminearum isolated from wheat in southern Brazil. Plant Pathology, 61(2), 289–295.

    Article  CAS  Google Scholar 

  • Atanasova-Penichon, V., Barreau, C., & Richard-Forget, F. (2016). Antioxidant secondary metabolites in cereals: Ootential involvement in resistance to fusarium and mycotoxin accumulation. Frontiers in Microbiology, 7, 566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Backhouse, D., Abubakar, A. A., Burgess, L. W., Dennisc, J. I., Hollaway, G. J., Wildermuth, G. B., Wallwork, H., & Henry, F. J. (2004). Survey of Fusarium species associated with crown rot of wheat and barley in eastern Australia. Australasian Plant Pathology, 33(2), 255–261.

    Article  Google Scholar 

  • Bai, G. H., & Shaner, G. (2004). Management and resistance in wheat and barley to fusarium head blight. Annual Review in Phytopatholology, 42(1), 135–161.

    Article  CAS  Google Scholar 

  • Bai, G. H., Desjardins, A., & Plattner, R. (2002). Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia, 153(2), 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Barna, B., Foder, J., Harrach, B. D., Pogany, M., & Kiraly, Z. (2012). The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiology and Biochemistry, 59, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Basler, R. (2016). Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat. Peer. Journal, 4, e2143.

    Google Scholar 

  • Bellincampi, D., Cervone, F., & Lionetti, V. (2014). Plant cell wall dynamics and wall related susceptibility in plant-pathogen interactions. Frontiers in Plant Science, 5(7), 228.

    PubMed  PubMed Central  Google Scholar 

  • Bluhm, B. H., Zhao, X., Flaherty, J. E., Xu, J. R., & Dunkle, L. D. (2007). RAS2 regulates growth and pathogenesis in Fusarium graminearum. Molecular Plant-Microbe Interactions, 20, 627–636.

    Article  PubMed  CAS  Google Scholar 

  • Blümke, A., Falter, C., Herrfurth, C., Sode, B., Bode, R., Schäfer, W., Feussner, I., & Voigt, C. A. (2014). Secreted fungal effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat head infection. Plant Physiology, 165(1), 346–358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boenisch, M. J., & Schäfer, W. (2011). Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biology, 11, 1–14.

    Article  CAS  Google Scholar 

  • Brown, D. W., McCormick, S. P., Alexander, N. J., Proctor, R. H., & Desjardins, A. E. (2002). Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genetics and Biology, 36, 224–233.

    Article  PubMed  CAS  Google Scholar 

  • Brown, N. A., Antoniw, J., & Hammond-Kosack, K. H. (2012). The predicted secretome of the plant pathogenic fungus Fusarium graminearum: A refined comparative analysis. PLoS One, 7(4), e33731. https://doi.org/10.1371/journal.pone.0033731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bushnell, W. R., Hazen, B. E., Pritsch, C. (2003). Histology and physiology of Fusarium head blight. Pages 44–83 in. Fusarium Head Blight of Wheat and Barley. K. J. Leonard and W. R. Bushnell, eds. American Phytopathological society press, St. Paul, MN, U.S.A.

  • Cao, S., Zhang, S., Hao, C., Liu, H., Xu, J. R., & Jin, Q. (2016). FgSsn3 kinase, a component of the mediator complex, is important for sexual reproduction and pathogenesis in Fusarium graminearum. Scientific Reports, 6, 22333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrozza, M. J., Utley, R. T., Workman, J. L., & Cote, J. (2003). The diverse functions of histone acetyltransferase complexes. Trends in Genetics, 19, 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Castaňares, E., Dinolfo, M. I., Del Ponte, E. M., Pan, D., & Stenglein, S. A. (2015). Species composition and genetic structure of Fusarium graminearum species complex populations affecting the main barley growing regions of South America. Plant Pathology, 65(6), 930–939.

    Article  CAS  Google Scholar 

  • Cerna, D., & Wilson, D. K. (2005). The structure of sif2p, a WD repeat protein functioning in the SET3 corepressor complex. Journal of Molecular Biology, 351, 923–935.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, L. R., Smith, K. M., & Freitag, M. (2013). The Fusarium graminearum histone h3 k27 methyltransferase kmt6 regulates development and expression of secondary metabolite gene clusters. PLoS Genetics, 9(10), e1003916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cook, R. J. (1980). Fusarium root rot of wheat and its control in the Pacific northwest. Plant Disease, 64, 1061–1066.

    Article  Google Scholar 

  • Del Poeta, M., Nimrichter, L., Rodrigues, M. L., & Luberto, C. (2014). Synthesis and biological properties of fungal glucosylceramide. PLoS Pathogens, 10(1), 1–6.

    Google Scholar 

  • Del Ponte, E. M., Fernandes, J. M. C., & Bergstrom, G. C. (2007). Influence of growth stage on Fusarium head blight and deoxynivalenol production in wheat. Journal of Phytopathology, 155(10), 577–581.

    Article  CAS  Google Scholar 

  • Desjardins, A. E. (2006). Fusarium mycotoxins: Chemistry. Genetics and Biology: APS Press, St. Paul, MN, USA.

    Google Scholar 

  • Desjardins, A. E., & Proctor, R. H. (2010). Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biology, 115(1), 38–48.

    Article  PubMed  CAS  Google Scholar 

  • Desmond, O. J., Manners, J. M., Stephens, A. E., MacLean, D. J., Schenk, P. M., Gardiner, D. M., Munn, A. L., & Kazan, K. (2008). The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Molecular Plant Pathology, 9, 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Ding S., Mehrabi R., Koten C., Kang Z., Wei Y., Seong K., Kistler H. C., Xu J. R. (2009). Transducin Beta-Like Gene FTL1 Is Essential for Pathogenesis in Fusarium graminearum. Eukaryot Cell, 8(6), 867–876.

  • Ding, L. N., Xu, H. B., Yi, H. Y., Yang, L. M., Kong, Z. X., Zhang, L. X., Xue, S. L., Jia, H. Y., & Ma, Z. Q. (2011). Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS One, 6(4), e19008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Durner, J., Wendehenne, D., & Klessig, D. F. (1998). Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proceedings of the National Academy of Sciences of the United States of America, 95(17), 10328–10333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellinger, D., Sode, B., Falter, C., & Voigt, C. A. (2014). Resistance of callose synthase activity to free fatty acid inhibition as an indicator of fusarium head blight resistance in wheat. Plant Signaling & Behavior, 9, e28982.

    Article  CAS  Google Scholar 

  • Farnese, F. S., Menezes-Silva, P. E., Gusman, G. S., & Oliveira, J. A. (2016). When bad guys become good ones: The key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Frontiers in Plant Science, 7, 471.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng, G., Liu, G., Selvaraj, G. R., Hughes, R., & Wei, Y. (2005). A secreted lipase encoded by LIP1 is necessary for efficient use of saturated triglyceride lipids in Fusarium graminearum. Microbiology, 151(12), 3911–3921.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, M. R., & Conner, R. L. (2011). Root and crown rot of wheat. Prairie Soils Crops. Journal, 4(1), 151–157.

    Google Scholar 

  • Flanary, P. L., DiBello, P. R., Estrada, P., & Dohlman, H. G. (2000). Functional analysis of Plp1 and Plp2, two homologues of phosducin in yeast. Journal of Biological Chemistry, 275, 18462–18469.

    Article  PubMed  CAS  Google Scholar 

  • Gagkaeva, T. Y., & Mattila, T. Y. (2004). Genetic diversity of Fusarium graminearum in Europe and Asia. European Journal of Plant Pathology, 110(5), 551–562.

    Article  CAS  Google Scholar 

  • Garcia-Cela, E., Kiaitsi, E., Sulyok, M., Medina, A., & Magan, N. (2018). Fusarium graminearum in stored wheat: Use of CO2 production to quantify dry matter losses and relate this to relative risks of zearalenone contamination under interacting environmental conditions. Toxins, 10(2), 86. https://doi.org/10.3390/toxins10020086.

    Article  PubMed Central  Google Scholar 

  • Geiser, D. M., Jimenez-Gasco, M. D. M., Kang, S., Makalowska, I., Veeraraghavan, N., Ward, T. J., Zhang, N., Kuldau, G. A., & O’Donnell, K. (2004). Fusarium-ID v. 1.0: A DNA sequence database for identifying fusarium. Europear. Journal of Plant Pathology, 110(5), 473–479.

    Article  CAS  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  PubMed  CAS  Google Scholar 

  • Goswami, R. S., & Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515–525.

    Article  PubMed  CAS  Google Scholar 

  • Goswami, R. S., & Kistler, H. C. (2005). Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology, 95, 1397–1404.

    Article  PubMed  CAS  Google Scholar 

  • Govrin, E. M., & Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10, 751–757.

    Article  PubMed  CAS  Google Scholar 

  • Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature, 389(6649), 349–352.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Q., Zhang, C., Liu, X., & Ma, Z. (2015). A transcription factor FgSte12 is required for pathogenicity in Fusarium graminearum. Molecular Plant Pathology, 16(1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Gunnaiah, R., & Kushalappa, A. C. (2014). Metabolomics deciphers the host resistance mechanisms in wheat cultivar Sumai-3, against trichothecene producing and non-producing isolates of Fusarium graminearum. Plant Physiology and Biochemistry, 83(1), 40–50.

    Article  PubMed  CAS  Google Scholar 

  • Gunnaiah, R., Kushalappa, A. C., Duggavathi, R., Fox, S., & Somers, D. J. (2012). Integrated Metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS One, 7(7), e40695.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo, X. W., Fernando, W. G. D., & Seow-Brock, H. Y. (2008). Population structure, chemotype diversity, and potential chemotype shifting of Fusarium graminearum in wheat fields of Manitoba. Plant Disease, 92(5), 756–762.

    Article  CAS  Google Scholar 

  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics, 701596. https://doi.org/10.1155/2014/701596.

  • Harholt, J., Suttangkakul, A., & Scheller, H. V. (2010). Biosynthesis of pectins. Plant Physiology, 153(2), 384–395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris, L. J., Alexander, N. J., Saparno, A., Blackwell, B., McCormick, S. P., Desjardins, A. E., Robert, L. S., Tinker, N., Hattori, J., Piché, C., Schernthaner, J. P., Watson, R., & Ouellet, T. (2007). A novel gene cluster in Fusarium graminearum contains a gene that contributes to butenolide synthesis. Fungal Genetics and Biology, 44(4), 293–306.

    Article  PubMed  CAS  Google Scholar 

  • Heller, J., & Tudzynski, P. (2011). Reactive oxygen species in phytopathogenic fungi: Signaling, development, and disease. Annual Review of Phytopatholology, 49, 369–390.

    Article  CAS  Google Scholar 

  • Horevaj, P., & Bluhm, B. H. (2012). BDM1, a phosducin-like gene of Fusarium graminearum, is involved in virulence during infection of wheat and maize. Molecular Plant Pathology, 13(5), 431–444.

    Article  PubMed  CAS  Google Scholar 

  • Hou, Z., Xue, C., Peng, Y., Katan, T., Kistler, H. C., & Xu, J. R. (2002). Mitogen activated protein kinase (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Molecular Plant-Microbe Interactions, 15(11), 1119–1127.

    Article  PubMed  CAS  Google Scholar 

  • Ilgen, P., Hadeler, B., Maier, F. J., & Schäfer, W. (2009). Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection. Molecular Plant-Microbe Interactions, 22(8), 899–908.

    Article  PubMed  CAS  Google Scholar 

  • Ismaiel, A. A., & Papenbrock, J. (2015). Mycotoxins: Producing fungi and mechanisms of phytotoxicity. Agriculture, 5(3), 492–537.

    Article  CAS  Google Scholar 

  • Jenczmionka, N. J., & Schäfer, W. (2005). The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes. Current Genetics, 47(1), 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Jenczmionka, N. J., Maier, F. J., Lösch, A. P., & Schäfer, W. (2003). Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Current Genetics, 43(2), 87–95.

    PubMed  CAS  Google Scholar 

  • Jenner, P. (2003). Oxidative stress in Parkinson’s disease. Annals of Neurology, 53, 26–36.

    Article  CAS  Google Scholar 

  • Jiang, J., Liu, X., Yin, Y., & Ma, Z. (2011a). Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. PLoS One, 6(11), e28291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, J., Yun, Y., Yang, Q., Shim, W. B., Wang, Z., & Ma, Z. (2011b). A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum. PLoS One, 6(9), e25311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, J., Yun, Y., Liu, Y., & Ma, Z. (2012). FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Fungal Genetics and Biology, 49(8), 653–662.

    Article  PubMed  CAS  Google Scholar 

  • Jonkers, W., Dong, Y., Broz, K., & Kistler, H. C. (2012). The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathogens, 8, e1002724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kazan, K., Gardiner, D. M., & Manners, J. M. (2012). On the trail of a cereal killer: Recent advances in Fusarium graminearum pathogenomics and host resistance. Molecular Plant Pathology, 13(4), 399–413.

    Article  PubMed  CAS  Google Scholar 

  • Khaledi, N., Taheri, P., & Falahati-Rastegar, M. (2016). Reactive oxygen species and antioxidant system responses in wheat cultivars during interaction with fusarium species. Australasian Plant Pathology, 45(6), 653–670.

    Article  CAS  Google Scholar 

  • Khaledi, N., Taheri, P., & Falahati-Rastegar, M. (2017). Identification, virulence factors characterization, pathogenicity and aggressiveness analysis of Fusarium spp., causing wheat head blight in Iran. European Journal of Plant Pathology, 147(4), 897–918.

    Article  CAS  Google Scholar 

  • Khaledi, N., Taheri, P., & Falahati-Rastegar, M. (2018). Evaluation of resistance and the role of some defense responses in wheat cultivars to Fusarium head blight. Journal of Plant Protection Research, 57(4), 205–217.

    Google Scholar 

  • Kikot, G. E., Hours, R. A., & Alconada, T. M. (2009). Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: A review. Journal of Basic Microbiology, 49(3), 231–241.

    Article  PubMed  CAS  Google Scholar 

  • Kim, N. H., Kim, B. S., & Hwang, B. K. (2013). Pepper arginine decarboxylase is required for polyamine and γ-aminobutyric acid signaling in cell death and defense response. Plant Physiology, 162(4), 2067–2083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuo, M. H., and Allis, C. D. (1998). Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays, 20, 615–626

  • Láday, M., Mulè, G., Moretti, A., Hamari, Z., Juhász, Á., Szécsi, Á., & Logrieco, A. (2004). Mitochondrial DNA variability in Fusarium proliferatum (Gibberella intermedia). European Journal of Plant Pathology, 110, 563–571.

    Article  Google Scholar 

  • Laurent, B., Moinard, M., Spataro, C., Ponts, N., Barreau, C., & Foulongne-Orio, M. (2017). Landscape of genomic diversity and host adaptation in Fusarium graminearum. BMC Genomics, 18, 203. https://doi.org/10.1186/s12864-017-3524-x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Chang, I. Y., Kim, H., Yun, S. H., Leslie, J. F., & Lee, Y. W. (2009). Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Applied and Environmental Microbiology, 75, 3289–3295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, Y., Min, K., Son, H., Park, A. R., Kim, J. C., Choi, G. J., & Lee, Y. W. (2014). ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Molecular Plant-Microbe. Interactions, 27(12), 1344–1355.

    Google Scholar 

  • Lee, Y., Son, H., Shin, J. Y., Choi, G., & Lee, Y. W. (2017). Genome-wide functional characterization of putative peroxidases in the head blight fungus Fusarium graminearum. Molecular Plant Pathology, 19, 715–730. https://doi.org/10.1111/mpp.12557.

    Article  PubMed  CAS  Google Scholar 

  • Lemmens, M., Scholz, U., Berthiller, F., Dall'Asta, C., Koutnik, A., Schuhmacher, R., et al. (2005). The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for fusarium head blight resistance in wheat. Molecular Plant-Microbe. Interactions, 18(12), 1318–1324.

    CAS  Google Scholar 

  • Lengeler, K. B., Davidson, R. C., D'souza, C., Harashima, T., Shen, W. C., Wang, P., Pan, X., Waugh, M., & Heitman, J. (2000). Signal transduction cascaderegulating fungal development and virulence. Microbiology and Molecular Biology Reviews, 64(4), 746–785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leplat, J., Friberg, H., Abid, M., & Steinberg, C. (2013). Survival of Fusarium graminearum, the causal agent of fusarium head blight a review. Agronomy for Sustainable Development, 33(1), 97–111.

    Article  Google Scholar 

  • Leslie, J. F., Summerell, A. B. (2006). The Fusarium laboratory manual. Blackwell publishing professional, p. 388.

  • Lević, J., Stankоvić, S., Krnjaja, V., Bočarov-Stančić, A., & Ivanović, D. (2012). Distribution frequency and incidence of seed-borne pathogens of some cereals and industrial crops in Serbia. Pesticides and. Phytomedicine, 27(1), 33–40.

    Google Scholar 

  • Li, C., Melesse, M., Zhang, S., Hao, C. F., Wang, C., Zhang, H., Hall, M. C., & Xu, J. R. (2015). FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum. Molecular Microbiology, 89(4), 770–786.

    Article  CAS  Google Scholar 

  • Liddell, C. M. (2003). Systematics of fusarium species and allies associated with fusarium head blight. In fusarium head blight of wheat and barley; Leonard KJ, Bushnell R, Eds.; the American Phytopathological society: St. Paul, Minnesota, USA, 2003, 35–43.

    Google Scholar 

  • Lionetti, V., Giancaspro, A., Fabri, E., Giove, S. L., Reem, N., Zabotina, O. A., Blanco, A., Gadaleta, A., & Bellincampi, D. (2015). Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum. BMC Plant Biology, 15, 6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, X., Tang, W. H., Zhao, X. M., & Chen, L. (2010). A network approach to predict pathogenic genes for Fusarium graminearum. PLoS One, 5(10), e13021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Liu N, Yin Y, Chen Y, Jiang J, Ma Z. (2015). Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses in Fusarium graminearum. Environmental Microbiology, 17(11), 4615–30.

  • Liu, Z., Zhang, X., Liu, X., Fu, C., Han, X., Yin, Y., & Ma, Z. (2016). The chitin synthase FgChs2 and other FgChss co-regulate vegetative development and virulence in F. graminearum. Scientific Reports, 6, 34975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, Y. Y., Sun, H. Y., Li, W., Xia, Y. L., Deng, Y. Y., Zhang, A. X., & Chen, H. G. (2017). Fitness of three chemotypes of Fusarium graminearum species complex in major winter wheat-producing areas of China. PLoS One, 12(3), e0174040. https://doi.org/10.1371/journal.pone.0174040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lofgren, L. A., LeBlanc, N. R., Certano, A. K., Nachtigall, J., LaBine, K. M., Riddle, J., Broz, K., Dong, Y., Bethan, B., Kafer, C. W., & Kistler, H. C. (2018). Fusarium graminearum: Pathogen or endophyte of north American grasses? New Phytologist, 217, 1203–1212.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S. W., Kroken, S., Lee, B. N., Robbertse, B., Churchill, A. C., Yoder, O. C., & Turgeon, B. G. (2003). A novel class of gene controlling virulence in plant pathogenic ascomycete fungi. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5980–5985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lysøe, E., Klemsdal, S. S., Bone, K. R., Frandsen, R. J. N., Johansen, T., Thrane, U., & Giese, H. (2006). The PKS4 gene of Fusarium graminearum is essential for zearalenone production. Applied and Environmental Microbiology, 72(6), 3924–3932.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lysøe, E., Seong, K. Y., & Kistler, H. C. (2011). The transcriptome of Fusarium graminearum during the infection of wheat. Molecular Plant-Microbe Interactions, 24(9), 995–1000.

    Article  PubMed  CAS  Google Scholar 

  • Ma, L. J., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M. J., Di Pietro, A., et al. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464, 367–373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, L. J., Geiser, D. M., Rooney, A. P., Trail, F., Proctor, R. H., O’Donnell, K., Gardiner, D. M., Manners, J. M., & Kazan, K. (2013). Fusarium Pathogenomics. Annual Review of Microbiology, 67, 399–416.

    Article  PubMed  CAS  Google Scholar 

  • Maier, F. J., Miedaner, T., Hadeler, B., Felk, A., Salomon, S., Lemmens, M., Kassner, H., & Schafer, W. (2006). Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Molecular Plant Pathology, 7(6), 449–461.

    Article  PubMed  CAS  Google Scholar 

  • Mesterházy, Á., Bartok, T., Mirocha, C. G., & Komoroczy, R. (1999). Nature of wheat resistance to fusarium head blight and the role of deoxynivalenol for breeding. Plant Breeding, 118, 97–110.

    Article  Google Scholar 

  • McCormick SP, Alexander NJ, Harris LJ. (2010). CLM1 of Fusarium graminearum encodes a longiborneol synthase required for culmorin production. Applied and Environmental Microbiology, 76(1), 136–41.

  • Miedaner, T., Schilling, A. G., & Geiger, H. H. (2001). Molecular genetic diversity and variation for aggressiveness in populations of Fusarium graminearum and Fusarium culmorum sampled from wheat fields in diefferent countries. Journal of Phytopathology, 149(11), 641–648.

    Article  CAS  Google Scholar 

  • Miedaner, T., Cumagun, C. J. R., & Chakraborty, S. (2008). Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Journal of Phytopathology, 156(3), 129–139.

    Article  Google Scholar 

  • Mirocha, C. J., Xie, W., & Filho, E. R. (2003). Chemistry and detection of fusarium mycotoxins. In fusarium head blight of wheat and barley. In K. J. Leonard & W. R. Bushnell (Eds.), the American Phytopathological society (Vol. 2003, pp. 144–164). Minnesota, USA: St. Paul.

  • Mur, L. A., Mandon, J., Persijn, S., Cristescu, S. M., Moshkov, I. E., Novikova, G. V., Hall, M. A., Harren, F. J., Hebelstrup, K. H., & Gupta, K. J. (2013). Nitric oxide in plants: Anassessment of the current state of knowledge. AoB Plants, 5, 1–17.

    Article  CAS  Google Scholar 

  • Nafisi, M., Fimognari, L., & Sakuragi, Y. (2015). Interplays between the cell wall and phytohormones in interaction between plants and necrotrophic pathogens. Phytochemistry, 112, 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, T. V., Schäfer, W., & Bormann, J. (2012). The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Molecular Plant-Microbe Interactions, 25(9), 1142–1156.

    Article  CAS  Google Scholar 

  • Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.

    Article  CAS  Google Scholar 

  • Nikraftar, F., Taheri, P., Flahati-Rastegar, M., & Tarighi, S. (2013). Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms. Physiological and Molecular Plant Pathology, 81, 74–83.

    Article  CAS  Google Scholar 

  • Nogueira, M. S., Decundo, J., Martinez, M., Dieguez, S. N., Moreyra, F., Moreno, M. V., & Stenglein, S. A. (2018). Natural contamination with mycotoxins produced by Fusarium graminearum and Fusarium poae in malting barley in Argentina. Toxins, 10(2), 78. https://doi.org/10.3390/toxins10020078.

    Article  PubMed Central  Google Scholar 

  • Noorbakhsh, Z., & Taheri, P. (2016). Nitric oxide: A signaling molecule which activates cell wall-associated defense of tomato against Rhizoctonia solani. European Journal of Plant Pathology, 144(3), 551–568.

    Article  CAS  Google Scholar 

  • Nyvall, R. F. (1970). Chlamydospores of Fusarium roseum ‘Graminearum’ as survival structures. Phytopathology, 60(8), 1175–1177.

    Article  Google Scholar 

  • O’Donnell, K., Kistler, H. C., Tacke, B. K., & Caspar, H. H. (2000). Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 7905–7910.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortega, L. M., Kikot, G. E., Astoreca, A. L., & Alconada, T. M. (2013). Screening of fusarium graminearum isolates for enzymes extracellular and deoxynivalenol production. The Journal of Mycology, 358140, 1–7.

    Google Scholar 

  • Palazzini, J., Roncallo, P., Cantoro, R., Chiotta, M., Yerkovich, N., Palacios, S., Echenique, V., Torres, A., Ramirez, M., Karlovsky, P., & Chulze, S. (2018). Biocontrol of fusarium graminearum sensu stricto, reduction of deoxynivalenol accumulation and phytohormone induction by two selected antagonists. Toxins, 10, 88. https://doi.org/10.3390/toxins10020088.

    Article  PubMed Central  Google Scholar 

  • Pan, D., Mionetto, A., Calero, N., Reynoso, M. M., Torres, A., & Bettucci, L. (2016). Population genetic analysis and trichothecene profiling of Fusarium graminearum from wheat in Uruguay. Genetics and Molecular Research, 15(1), 1–11.

    Article  CAS  Google Scholar 

  • Parry, D. W., Jenkinson, P., & McCleod, L. (1995). Fusarium ear blight (scab) in small grain cereals, a review. Plant Pathology, 44(2), 207–238.

    Article  Google Scholar 

  • Pereyra, S., & Dill-Macky, R. (2010). Fusarium species recovered from wheat and barley grains in Uruguay, pathogenicity and deoxynivalenol content. Agrociencia Uruguay, 14(2), 33–44.

    Google Scholar 

  • Perissi, V., Aggarwal, A., Glass, C. K., Rose, D. W., & Rosenfeld, M. G. (2004). A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell, 116, 511–526.

    Article  PubMed  CAS  Google Scholar 

  • Pogorelko, G., Lionetti, V., Bellincampi, D., & Zabotina, O. (2013). Cell wall integrity: Targeted post-synthetic modifications to reveal its role in plant growth and defense against pathogens. Plant Signaling & Behavior, 8(9), 1–8.

    Article  Google Scholar 

  • Ponts, N., Pinson-Gadais, L., Barreau, C., Richard-Forget, F., & Ouellet, T. (2007). Exogenous H2O2 and catalase treatments interfere with tri genes expression in liquid cultures of Fusarium graminearum. FEBS Letters, 581(3), 443–447.

    Article  PubMed  CAS  Google Scholar 

  • Pritsch, C., Muehlbauer, G. J., Bushnell, W. R., Somers, D. A., & Vance, C. P. (2000). Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Molecular Plant-Microbe. Interactions, 13(2), 159–169.

    CAS  Google Scholar 

  • Proctor, R. H., Hohn, T. M., & McCormick, S. P. (1995). Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Molecular Plant-Microbe. Interactions, 8(4), 593–601.

    CAS  Google Scholar 

  • Proctor, R. H., McCormick, S. P., Alexander, N. J., & Desjardins, A. E. (2009). Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Molecular Microbiology, 74(5), 1128–1142.

    Article  PubMed  CAS  Google Scholar 

  • Purwar, S., Sundaram, S., Sinha, S., Gupta, A., Dobriyall, N., & Kumar, A. (2013). Expression and in silico characterization of phenylalanine ammonium lyase against Karnal bunt (Tilletia indica) in wheat (Triticum aestivum). Bioinformation, 9(20), 1013–1018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin, J., Wang, G., Jiang, C., Xu, J. R., & Wang, C. (2015). Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum. Scientific Reports, 5, 8504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qu, B., Li, H. P., Zhang, J. B., Xu, Y. B., Huang, T., Wu, A. B., Zhao, C. S., Carter, J., Nicholson, P., & Liao, Y. C. (2008). Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathology, 57(1), 15–24.

    CAS  Google Scholar 

  • Ramamoorthy, V., Cahoon, E. B., Thokala, M., Kaur, J., Li, J., & Shah, D. M. (2009). Sphingolipid C-9 methyltransferases are important for growth and virulence but not for sensitivity to antifungal plant defensins in Fusarium graminearum. Eukaryotic Cell, 8(2), 217–229.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez, M. L., Reynoso, M. M., Farnochi, M. C., Torres, A. M., Leslie, J. F., & Chulze, S. N. (2007). Population genetic structure of Gibberella zeae isolated from wheat in Argentina. Food Additives and Contaminants, 24, 1115–1120.

    Article  PubMed  CAS  Google Scholar 

  • Ravensdale, M., Rocheleau, H., Wang, L., Nasmith, C., Ouellet, T., & Subramaniam, R. (2014). Components of priming-induced resistance to fusarium head blight in wheat revealed by two distinct mutants of Fusarium graminearum. Molecular Plant Pathology, 15(9), 948–956.

    PubMed  CAS  Google Scholar 

  • Rittenour, W. R., & Harris, S. D. (2013). Glycosylphosphatidylinositol-anchored proteins in Fusarium graminearum: inventory, variability, and virulence. PLoS One, 8(11), e81603. https://doi.org/10.1371/journal.pone.0081603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rittenour, W. R., Chen, M., Cahoon, E. B., & Harris, S. D. (2011). Control of glucosylceramide production and morphogenesis by the Bar1 ceramide synthase in Fusarium graminearum. PLoS One, 6, e19385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rose, J. K. C., & Lee, S. J. (2010). Straying off the highway: Trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiology, 153, 433–436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rudd, J. C., Horsley, R. D., McKendry, A. L., & Elias, E. M. (2001). Host plant resistance genes for fusarium head blight: Sources mechanisms and utility in conventional breeding systems. Crop Science, 41(3), 620–627.

    Article  Google Scholar 

  • Salomon, S., Gácser, A., Frerichmann, S., Kröger, C., Schäfer, W., & Voigt, C. A. (2012). The secreted lipase FGL1 is sufficient to restore the initial infection step to the apathogenic fusarium graminearum MAP kinase disruption mutant Δgpmk1. European Journal of Plant Pathology, 134(1), 23–37.

    Article  CAS  Google Scholar 

  • Saremi, H., Okhovvat, S. M., & Ashrafi, S. J. (2011). Fusarium diseases as the main soil borne fungal pathogen on plants and their control management with soil solarization in Iran. African Journal of Biotechnology, 10(80), 18391–18398.

    Article  Google Scholar 

  • Sarver, B. A., Ward, T. J., Gale, L. R., Broz, K., Kistler, H. C., Aoki, T., Nicholson, P., Carter, J., & O’Donnell, K. (2011). Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genetics and Biology, 48(12), 1096–1107.

    Article  PubMed  Google Scholar 

  • Sattler, S. E., & Funnell-Harris, D. L. (2013). Modifying lignin to improve bioenergy feedstocks: Strengthening the barrier against pathogens? Frontiers in Plant. Sciences, 4, 70.

    Google Scholar 

  • Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review in. Plant Biology, 61, 263–289.

    Article  CAS  Google Scholar 

  • Schulz, R. (2001). The pharmacology of phosducin. Pharmacological Research, 43, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Schweiger, W., Boddu, J., Shin, S., Poppenberger, B., Berthiller, F., Lemmens, M., Muehlbauer, G. J., & Adam, G. (2010). Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Molecular Plant-Microbe. Interactions, 23(7), 977–986.

    CAS  Google Scholar 

  • Shetty, N. P., Jørgensen, H. J. L., Jensen, J. D., Collinge, D. B., & Shetty, H. S. (2008). Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 121(3), 267–280.

    Article  CAS  Google Scholar 

  • Shim, W. B., Sagaram, U. S., Choi, Y. E., So, J., Wilkinson, H. H., & Lee, Y. W. (2006). FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum. Molecular Plant-Microbe Interactions, 19(7), 725–733.

    Article  PubMed  CAS  Google Scholar 

  • Somerville, C. (2006). Cellulose synthesis in higher plants. Annual Review of Cell and Developmental Biology, 22(1), 53–78.

    Article  PubMed  CAS  Google Scholar 

  • Song, B., Li, H. P., Zhang, J. B., Wang, J. H., Gong, A. D., Song, X. S., Chen, T., & Liao, Y. C. (2013). Type II myosin gene in Fusarium graminearum is required for septation, development, mycotoxin biosynthesis and pathogenicity. Fungal Genetics and Biology, 54(1), 60–70.

    Article  PubMed  CAS  Google Scholar 

  • Sorahinobar, M., Niknam, V., Ebrahimzadeh, H., Soltanloo, H., Behmanesh, M., & Tahmasebi, E. S. (2015). Central role of salicylic acid in resistance of wheat against Fusarium graminearum. Journal of Plant Growth Regulation, 35(2), 477–491.

    Article  CAS  Google Scholar 

  • Stumpf, R., Santos, J., Gomes, L. B., Silva, C. N., Tessmann, D. J., Ferreira, F. D., Junior, M. M., & Del Ponte, E. M. (2013). Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul state for the 2008/09 and 2009/10 growing seasons. Brazilian Journal of Microbiology, 44(1), 89–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sudakin, D. L. (2003). Trichothecenes in the environment: Relevance to human health. Toxicology Letters, 143(2), 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Patholology, 4(2), 195–209.

    Article  Google Scholar 

  • Sweetlove, L. J., Heazlewood, J. L., Herald, V., Holtzapffel, R., Day, D. A., Leaver, C. J., & Millar, A. H. (2002). The impact of oxidative stress on Arabidopsis mitochondria. The Plant Journal, 32, 891–904.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, C., Ischiropoulos, H., & Radi, R. (2007). Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nature Reviews. Drug Discovery, 6, 662–680.

    Article  PubMed  CAS  Google Scholar 

  • Taheri, P., & Tarighi, S. (2010). Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of Plant Physiology, 167, 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Taheri, P., & Tarighi, S. (2011). Cytomolecular aspects of rice sheath blight caused by Rhizoctonia solani. European Journal of Plant Pathology, 129(4), 511–528.

    Article  Google Scholar 

  • Taheri, P., Gnanamanickam, S., & Höfte, M. (2007). Characterization, genetic structure, and pathogenicity of Rhizoctonia spp. associated with rice sheath diseases in India. Phytopathology, 97(3), 373–383.

    Article  PubMed  CAS  Google Scholar 

  • Takemoto, D., Tanaka, A., & Scott, B. (2007). NADPH oxidases in fungi: Diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genetics and Biology, 44, 1065–1076.

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plant: H2O2 accumulation in papillae and hypersensitive response during the barley- powdery mildew interaction. The Plant Journal, 11(6), 1187–1194.

    Article  CAS  Google Scholar 

  • Torres, M. A. (2010). ROS in biotic interactions. Physiologia Plantarum, 138(4), 414–429.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141(2), 373–378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trail, F., Xu, J. R., San Miguel, P., Halgren, R. G., & Kistler, H. C. (2003). Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genetics and Biology, 38(2), 187–197.

    Article  PubMed  Google Scholar 

  • Ueno, Y. (1984). Toxicological features of T-2 toxin and related trichothecenes. Fundamental and Applied Toxicology, 4(2), S124–S132.

    Article  PubMed  CAS  Google Scholar 

  • Underwood, W. (2012). The plant cell wall: A dynamic barrier against pathogen invasion. Frontiers in Plant Science, 7(3), 1–6.

    Google Scholar 

  • Urban, M., Mott, E., Farley, T., & Hammond-Kosack, K. (2003). The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Molecular Plant Pathology, 4(5), 347–359.

    Article  PubMed  CAS  Google Scholar 

  • Van Acker, R., Vanholme, R., Storme, V., Mortimer, J. C., Dupree, P., & Boerjan, W. (2013). Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnology for Biofuels, 36, 46. https://doi.org/10.1186/1754-6834-6-46.

    Article  CAS  Google Scholar 

  • Van De Walle, J., sergent, T., Piront, N., Toussaint, O., schneider, Y. J., & Larondelle, Y. (2010). Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis. Toxicolology and Applied Pharmacology, 245, 291–298.

    Article  CAS  Google Scholar 

  • Voigt, C. A., Schäfer, W., & Salomon, S. (2005). A secreted lipase of Fusarium graminearum is a novel virulence factor during infection of cereals. The Plant Journal, 42(3), 364–375.

    Article  PubMed  CAS  Google Scholar 

  • Waldron, B. L., Moreno-Sevilla, B., Anderson, J. A., Stack, R. W., & Frohberg, R. C. (1999). RFLP mapping of QTL for fusarium head blight resistance in wheat. Crop Science, 39(3), 805–811.

    Article  CAS  Google Scholar 

  • Walther, A., & Wendland, J. (2003). Septation and cytokinesis in fungi. Fungal Genetics and Biology, 40(3), 187–196.

    Article  PubMed  Google Scholar 

  • Wang, Y., Chantreau, M., Sibout, R., & Hawkins, S. (2013). Plant cell wall lignification and monolignol metabolism. Frontiers in Plant Science, 9(4), 220.

    Google Scholar 

  • Wang, H. B., Luo, J., Huang, X. Y., Lu, M. B., & Yu, L. J. (2014a). Oxidative stress response of Blakeslea trispora induced by H2O2 during beta-carotene biosynthesis. Journal of Industrial Microbiology and Biotechnology, 41(3), 555–561.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Mogg, C., Walkowiak, S., Josha, M., & Subramaniam, R. (2014b). Characterization of NADPH oxidase genes NoxA and NoxB in Fusarium graminearum. Canadian Journal of Plant Pathology, 36(1), 12–21.

    Article  CAS  Google Scholar 

  • Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E. O., & O’Donnell, K. (2002). Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic. Fusarium. Proceedings of National Academy of Science of the United States of America, 99, 9278–9283.

    Article  CAS  Google Scholar 

  • Ward, T. J., Clear, R. M., Rooney, A. P., O’Donnell, K., Gaba, D., Patrick, S., Starkey, D. E., Gilbert, J., Geiser, D. M., & Nowicki, T. W. (2008). An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genetics and Biology, 45, 473–484.

    Article  PubMed  Google Scholar 

  • Wolffe, A. P., & Pruss, D. (1996). Targeting chromatin disruption: Transcription regulators that acetylate histones. Cell, 84, 817–819.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Z., Hong-Xiang, M., Yong-Jin, Z., Jin-Cheng, X., Jian-Hua, C., Gui-Hong, Y., Xiao-Bo, S., & Lei, W. (2014). Identification and genetic division of Fusarium graminearum and Fusarium asiaticum by species-specific SCAR markers. Journal of Phytopathology, 162(2), 81–88.

    Article  CAS  Google Scholar 

  • Yao, S. H., Guo, Y., Wang, Y. Z., Zhang, D., Xu, L., & Tang, W. H. (2016). A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum. Fungal Genetics and Biology, 91, 32–42.

    Article  PubMed  CAS  Google Scholar 

  • Yin, T., Zhang, Q., Wang, J., Liu, H., Wang, C., Xu, J. R., & Jiang, C. (2018). The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Molecular Plant Pathology, 19(3), 552–563.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, H. G., Chan, D. W., Huang, Z. Q., Li, J. W., Fondell, J. D., Qin, J., & Wong, J. M. (2003). Purification and functional characterization of the human N-CoR complex: The roles of HDAC3, TBL1 and TBLR1. EMBO Journal, 22, 1336–1346.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J. B., Bai, G. H., Zhou, W. C., Dong, Y. H., & Kolb, F. L. (2008). Quantitative trait loci for fusarium head blight resistance in recombinant inbred population of Wangshuibai/Wheaton. Phytopathology, 98(1), 87–94.

    Article  PubMed  Google Scholar 

  • Zhang, H., Zhang, Z., van der Lee, T., Chen, W. Q., Xu, J., Xu, J. S., Yang, L., Yu, D., Waalwijk, C., & Feng, J. (2010). Population genetic analyses of Fusarium asiaticum populations from barley suggest a recent shift favoring 3ADON producers in southern China. Phytopathology, 100(4), 328–336.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Van der Lee, T., Waalwijk, C., Chen, W., Xu, J., Xu, J., Zhang, Y., & Feng, J. (2012). Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive isolates. PLoS One, 7(2), e31722.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, H., Li, B., Fang, Q., Li, Y., Zheng, X., & Zhang, Z. (2016a). SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum. Molecular Plant Pathology, 17(1), 108–119.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C., Lin, Y., Wang, J., Wang, Y., Chen, M., Norvienyeku, J., Li, G., Yu, W., & Wang, Z. (2016b). FgNoxR, a regulatory subunit of NADPH oxidases, is required for female fertility and pathogenicity in Fusarium graminearum. FEMS Microbiology Letters, 363(1), 1–6.

    Article  CAS  Google Scholar 

  • Zhou, K., Hao, J., Griffey, C., Chung, H., O'Keefe, S. F., Chen, J., & Hogan, S. (2007). Antioxidant properties of fusarium head blight-resistant and -susceptible soft red winter wheat grains grown in Virginia. Journal of Agricultural and Food Chemistry, 55, 3729–3736.

    Article  PubMed  CAS  Google Scholar 

  • Zhou X., Heyer C., Choi Y. E., Mehrabi R., Xu J. R. (2010). The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum. Fungal Genetics and Biology, 47(2), 143–51.

  • Zhao C., Waalwijk C., de Wit P. J. G. M., van der Lee T., and Tang D. (2011). EBR1, a novel Zn2Cys6 transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum. Molecular Plant-Microbe Interaction, 24(12), 1407–1418.

  • Zhou, S., Yang, Q., Yin, C., Liu, L., & Liang, W. (2016). Systematic analysis of the lysine acetylome in Fusarium graminearum. BMC Genomics, 17, 1019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parissa Taheri.

Ethics declarations

The author is not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

Conflict of interest

There is no potential conflict of interest to declare.

Human and animal studies

This research did not involve human participants and/or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taheri, P. Cereal diseases caused by Fusarium graminearum: from biology of the pathogen to oxidative burst-related host defense responses. Eur J Plant Pathol 152, 1–20 (2018). https://doi.org/10.1007/s10658-018-1471-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1471-2

Keywords

Navigation