Advertisement

European Journal of Plant Pathology

, Volume 152, Issue 1, pp 185–197 | Cite as

Bois noir affects the yield and wine quality of Vitis vinifera L. cv. ‘Chardonnay’

  • Ibolya Ember
  • Péter Bodor
  • Zsolt Zsófi
  • Zita Pálfi
  • Márta Ladányi
  • György Pásti
  • Tamás Deák
  • Diana Sárdy Nyitrainé
  • Borbála Bálo
  • András Szekeres
  • Ottó Bencsik
  • Xavier Foissac
  • László Palkovics
  • Jacobus Johannes Hunter
  • György Dénes Bisztray
Article
  • 142 Downloads

Abstract

The Bois noir (BN) disease induced by ‘Candidatus Phytoplasma solani’ (CPs) is common in European vineyards. Its damage has not been fully investigated, especially with regards to wine attributes. The impact of BN on yield, berry composition and wine characteristics of Vitis vinifera L. cv. ‘Chardonnay’ was therefore comprehensively characterized in a 3-year field experiment in Hungary, Eger winegrowing region. Additionally, the bindweed-related tuf-b1 genotype was identified to be involved in the BN pathosystem in the experimental vineyard. Infection of CPs tuf-b1 genotype resulted in severe yield loss, the average decrease in number of bunches and total yield per vine was 56.7% and 68.4%, respectively. Analyses of wines produced from grapes of BN infected vines revealed decreased alcohol, epicatechin and iron contents; and increased organic acids, titratable acidity, catechin and calcium contents. Sensory evaluation of these wines confirmed unfavourable characteristics, i.e. higher acidity, bitterness, and usually pinkish discolouration. Negative impact on berry composition and wine quality were pronounced in the vintage with favourable weather conditions for grapevine production, whereas the negative effects of BN infection were less prominent, even masked, in the vintages with unfavourable weather (wet and cool). To reduce BN-caused damage, the need for improved preventative and curative measures for BN disease is highlighted.

Keywords

Candidatus Phytoplasma solani’ Bindweed Tuf Grapevine yellows Phenolic compounds Yield loss Wine quality 

Notes

Acknowledgements

We thank Dr. Szabolcs Villangó and Xenia Pálfi for providing meteorological data, as well as István Patai, Zsolt Pálmai, Tamás Lénárd, and Tamás Vincze for their help in the wine preparation process. We thank our colleagues in the Department of Viticulture and the Department of Oenology; and students Eszter Pájer, Bence Czigány, Dorottya Pál and Norbert Simó, for their help with measurements. We also thank Drs. Mária Kölber, Rita Lózsa, István Fazekas and Prof. Miklós Kállay for their valuable comments and Michael Maixner for tuf reference isolates. This project was funded by the National Research, Development and Innovation Fund of the Hungarian Government (KTIA_AIK_12-1-2013-0001) and partly funded by OTKA Research Grant (ID: 113223).

Funding

This project was funded by the National Research, Development and Innovation Fund of the Hungarian Government (KTIA_AIK_12–1–2013-0001) and partly funded by OTKA Research Grant (ID: 113223).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This research does not include any animal and/or human trials.

Ethical approval

The authors bear all the ethical responsibilities of this manuscript.

Supplementary material

10658_2018_1462_MOESM1_ESM.docx (799 kb)
ESM 1 (DOCX 799 kb)

References

  1. Boudon-Padieu, E. (2003). Grapevine phytoplasmas. First Internet Conference on Phytopathogenic Mollicutes Grapevine phytoplasmas; pp. 57–62. http://www.uniud.it/phytoplasma/conf.html. Accessed 24–29 May 1999.
  2. Borgo, M., Pegoraro, G., & Sartori, E. (2016). Susceptibility of grape varieties to ESCA disease. 39th World Congress of Vine and Wine, BIO Web of Conferences 7, 01041.Google Scholar
  3. Boss, P., Davies, C., & Robinson, S. P. (1996). Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Molecular Biology, 32, 565–569.CrossRefPubMedGoogle Scholar
  4. Constable, F. E. (2010). Phytoplasma epidemiology: Grapevines as a model. In P. G. Weintraub & P. Jones (Eds.), Phytoplasmas: Genomes, plant hosts and vectors (pp. 188–212). Wallingford: CAB International.Google Scholar
  5. Cvrković, T., Jović, J., Mitrović, M., Krstić, O., & Toševski, I. (2013). Experimental and molecular evidence of Reptalus panzeri as a natural vector of bois noir. Plant Pathology, 63, 42–53.CrossRefGoogle Scholar
  6. Danet, J. L., Balakishiyeva, G., Cimerman, A., Sauvion, N., Marie-Jeanne, V., Labonne, G., et al. (2011). Multilocus sequence analysis reveals the genetic diversity of European fruit tree phytoplasmas and supports the existence of inter-species recombination. Microbiology, 157, 438–450.CrossRefPubMedGoogle Scholar
  7. EFSA PLH Panel (EFSA panel on plant health) (2014). Scientific Opinion on the pest categorisation of Candidatus Phytoplasma solani. EFSA Journal 2014, 12, (12):3924, 3927.Google Scholar
  8. Ember, I., Acs, Z., Salar, P., Danet, J. L., Foissac, X., Kölber, M., et al. (2011). Survey and genetic diversity of phytoplasmas from the 16SrV-C and -D subgroups in Hungary. Bulletin of Insectology, 64, 33–34.Google Scholar
  9. Endeshaw, S. T., Murolo, S., Romanazzi, G., & Neri, D. (2012). Effects of bois noir on carbon assimilation, transpiration, stomatal conductance of leaves and yield of grapevine (Vitis vinifera) cv. Chardonnay. Physiologia Plantarum, 145, 286–295.CrossRefPubMedGoogle Scholar
  10. Eveillard, S., Jollard, C., Labroussaa, F., Khalil, D., Perrin, M., Desqué, D., et al. (2016). Contrasting susceptibilities to Flavescence Dorée in Vitis vinifera, rootstocks and wild Vitis species. Frontiers in Plant Science, 7, 1762.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Foissac, X., & Maixner, M. (2013). Spread of grapevine phytoplasma diseases. Phytopathogenic Mollicutes, 3, 47–50.CrossRefGoogle Scholar
  12. Foissac, X., & Wilson, M. R. (2010). Current and future distributions of Phytoplasma. In P. G. Weintraub & P. Jones (Eds.), Phytoplasmas: Genomes, plant hosts and vectors (pp. 309–324). Wallingford: CAB International.Google Scholar
  13. Garau, R., Sechi, A., Prota, V. A., & Moro, G. (2007). Productive parameters in chardonnay and Vermentino grapevines infected with “bois noir” and recovered in Sardinia. Bulletin of Insectology, 60, 233–234.Google Scholar
  14. Himeno, M., Kitazawa, Y., Yoshida, T., Maejima, K., Yamaji, Y., Oshima, K., et al. (2014). Purple top symptoms are associated with reduction of leaf cell death in phytoplasma-infected plants. Scientific Reports, 4, 4111.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hren, M., Nikolić, P., Rotter, A., Blejec, A., Terrier, N., Ravnikar, M., et al. (2009). “Bois noir” phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics, 10, 460.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hunter, J. J., & Visser, J. H. (1988). The effect of partial defoliation, leaf position and developmental stage of the vine on the photosynthetic activity of Vitis vinifera L. cv. Cabernet sauvignon. South African Journal of Enology and Viticulture, 9, 9–15.Google Scholar
  17. Jagoueix-Eveillard, S, Tarendeau, F, Guolter, K, Danet, J.L., Bové, J.M., &Garnier, M. (2001). Catharanthus roseus genes regulated differentially by mollicute infections. Molecular Plant-Microbe Interactions, 14, 225–233.Google Scholar
  18. Kortekamp, A. (2006). Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiology and Biochemistry, 44, 58–67.CrossRefPubMedGoogle Scholar
  19. Kosovac, A., Johannesen, J., Krstić, O., Mitrović, M., Cvrković, T., Tosevski, I. et al. (2016). Is Hyalesthes obsoletus a species complex undergoing cryptic speciation? More evidence of host-associated genetic differentiation in Southeast Europe. Mitteilungen Klosterneuburg (Supplement), 66, 24–25.Google Scholar
  20. Kriston, É., Krizbai, L., Szabó, G., Bujdoso, B., Orosz, S. Z., Dancsházy, Z. S., et al. (2013). First occurrence of grapevine Falvescence dorée in Hungary. Növényvédelem, 49, 433–438.Google Scholar
  21. Kuntzmann, P., Foissac, X., Beccavin, I., Chambin, C., Choloux, S., Coarer, M., et al. (2014). Bois noir de la vigne: synthèse des dernières observations. Phytoma, 679, 31–36.Google Scholar
  22. Landi, L., & Romanazzi, G. (2011). Seasonal variation of defense-related gene expression in leaves from bois noir affected and recovered grapevines. Journal of Agricultural and Food Chemistry, 59, 6628–6637.CrossRefPubMedGoogle Scholar
  23. Langer, M. & Maixner, M. (2004). Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis, 43, 191–200.Google Scholar
  24. Lee, I.-M., Davis, R. E., & Gundersen-Rindal, D. E. (2000). Phytoplasma: Phytopathogenic Mollicutes. Annual Review of Microbiology, 54, 221–255.CrossRefPubMedGoogle Scholar
  25. Lepka, P., Stitt, M., Moll, E., & Seemülleer, E. (1999). Effect of phytoplasma infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiological and Molecular Plant Pathology, 55, 59–68.CrossRefGoogle Scholar
  26. Lutter, M., Clark, A. C., Prenzler, P. D., & Scollary, G. R. (2007). Oxidation of caffeic acid in a wine-like medium: Production of dihydroxybenzaldehyde and its subsequent reactions with (+)-catechin. Food Chemistry, 105, 968–975.CrossRefGoogle Scholar
  27. Maixner, M. (1994). Transmission of German grapevine yellows (Vergilbungskrankheit) by the planthopper Hyalesthes obsoletus (Auchenorrhyncha:Cixiidae). Vitis, 33, 103–104.Google Scholar
  28. Maixner, M. (2011). Recent advances in Bois noir research. In Abstract book of 2nd BN Workshop (pp. 17–32), Castelbrando Cison di Valmarino Italy. Coop. Libraria Editrice Università di Padova: Padova, Italy.Google Scholar
  29. Martelli, P.M., & Boudon-Padieu, E. (2006). Grapevine Yellows: individual diseases. In G.P. Martelli, & E. Boudon-Padieu (Ed.), Directory of infectious diseases of grapevines viruses and virus-like diseases of the grapevine: bibliographic report 1998–2004 (pp. 154–167). Bari: CIHEAM. Options Méditerranéennes: Série B. Etudes et Recherches; n. 55, Bari, Italy.Google Scholar
  30. Matus, J.T., Vega, A., Loyola, R., Serrano, C., Cabrera, S., & Arce-Johnson, P. (2008). Phytoplasma and virus detection in commercial plantings of Vitis vinifera cv. Merlot exhibiting premature berry dehydration. Electronic Journal of Biotechnology, 11, 1–10.Google Scholar
  31. Musetti, R., Buxa, S. V., De Marco, F., Loschi, A., Polizzotto, R., Kogel, K. H., et al. (2013). Phytoplasma-triggered Ca2+ influx is involved in sieve-tube blockage. Molecular Plant Microbe Interactions e-Xtra, 26, 379–386.CrossRefGoogle Scholar
  32. Musetti, R., De Marco, F., Farhan, K., Polizzotto, R., Santi, S., Ermacora, P., et al. (2011). Phloem-specific protein expression patterns in apple and grapevine during phytoplasma infection and recovery. Bulletin of Insectology, 64, 211–212.Google Scholar
  33. Musetti, R., Marabottini, R., Badiani, M., Martini, M., Sanità di Toppi, L., & Borselli, S. (2007). On the role of H2O2 in the recovery of grapevine (Vitis vinifera cv. Prosecco) from Flavescence dorée disease. Functional Plant Biology, 34, 750–758.CrossRefGoogle Scholar
  34. Musetti, R., Paolacci, A., Ciaffi, M., Tanzarella, O. A., Polizzotto, R., Tubaro, F., et al. (2009). Phloem cytochemical modification and gene expression following the recovery of apple plants from apple proliferation disease. Phytopathology, 100, 390–399.CrossRefGoogle Scholar
  35. Panassiti, B., Hartig, F., Breuer, M., & Biedermann, R. (2015). Bayesian inference of environmental and biotic factors determining the occurrence of the grapevine disease ‘bois noir’. Ecosphere, 6, 143.CrossRefGoogle Scholar
  36. Pavan, F., Mori, N., Bressan, S., & Mutton, P. (2012). Control strategies for grapevine phytoplasma diseases: Factors influencing the profitability of replacing symptomatic plants. Phytopathologia Mediterranea, 51, 11–22.Google Scholar
  37. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644.CrossRefGoogle Scholar
  38. Pracros, P., Renaudin, J., Eveillard, S., Mouras, A., & Hernould, M. (2006). Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Molecular Plant-Microbe Interactions, 19, 62–68.CrossRefPubMedGoogle Scholar
  39. Quaglino, F., Zhao, Y., Casati, P., Bulgari, D., Bianco, P. A., Wei, W., et al. (2013). 'Candidatus Phytoplasma solani', a novel taxon associated with stolbur and bois noir related diseases of plants. International Journal of Systematic and Evolutionary Microbiology, 63, 2879–2894.CrossRefPubMedGoogle Scholar
  40. Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2006). The Chemistry of Wine Stabilization and Treatments Handbook of Enology, volume 2 (2nd ed.). Chichester: Wiley.CrossRefGoogle Scholar
  41. Romanazzi, G., Murolo, S., & Feliziani, E. (2013). Effects of an innovative strategy to contain grapevine bois noir: Field treatment with resistance inducers. Phytopathology, 103, 785–791.CrossRefPubMedGoogle Scholar
  42. Rusjan, D., Veberič, R., & Mikulič-Petkovšek, M. (2012). The response of phenolic compounds in grapes of the variety “chardonnay” (Vitis vinifera L.) to the infection by phytoplasma bois noir. European Journal of Plant Pathology, 133, 965–974.CrossRefGoogle Scholar
  43. Rusjan, D., & Mikulic-Petkovsek, M. (2015). Phenolic responses in 1-year-old canes of Vitis vinifera cv. Chardonnay induced by grapevine yellows (bois noir). Australian Journal of Grape and Wine Research, 21, 123–134.CrossRefGoogle Scholar
  44. Salar, P., Charenton, C., Foissac, X., & Malembic-Maher, S. (2013). Multiplication kinetics of Flavescence dorée phytoplasma in broad bean. Effect of phytoplasma strain and temperature. European Journal of Plant Pathology, 135, 371–381.CrossRefGoogle Scholar
  45. Santi, S., De Marco, F., Polizzotto, R., Grisan, S., & Musetti, R. (2013). Recovery from stolbur disease in grapevine involves changes in sugar transport and metabolism. Frontiers in Plant Science, 4, 1–12.CrossRefGoogle Scholar
  46. Schwarz, M., Rodríguez, C., Guillén, D. A., & Barroso, C. G. (2012). Evolution of the colour, antioxidant activity and polyphenols in unusually aged Sherry wines. Food Chemistry, 133, 271–276.CrossRefPubMedGoogle Scholar
  47. Sforza, R., Clair, D., Daire, X., Larrue, J., & Boudon-Padieu, E. (1998). The role of Hyalesthes obsoletus (Hemiptera: Cixiidae) in the occurrence of bois noir of grapevine in France. Journal of Phytopathology, 101, 549–556.CrossRefGoogle Scholar
  48. Sugio, A., Maclean, A. M., Kingdom, H. N., Grieve, V. M., Manimekalai, R., & Hogenhout, S. A. (2011). Diverse targets of phytoplasma effectors: From plant development to defense against insects. Annual Review of Phytopathology, 49, 175–195.CrossRefPubMedGoogle Scholar
  49. Zahavi, T., Sharon, R., Sapir, G., Mawassi, M., Dafny-Yelin, M., & Naor, V. (2013). The long-term effect of Stolbur phytoplasma on grapevines in the Golan Heights. Australian Journal of Grape and Wine Research, 19, 277–284.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Ibolya Ember
    • 1
  • Péter Bodor
    • 1
  • Zsolt Zsófi
    • 2
  • Zita Pálfi
    • 2
  • Márta Ladányi
    • 3
  • György Pásti
    • 4
  • Tamás Deák
    • 1
  • Diana Sárdy Nyitrainé
    • 4
  • Borbála Bálo
    • 1
  • András Szekeres
    • 5
  • Ottó Bencsik
    • 5
  • Xavier Foissac
    • 6
    • 7
  • László Palkovics
    • 8
  • Jacobus Johannes Hunter
    • 9
  • György Dénes Bisztray
    • 1
  1. 1.Faculty of Horticultural Science, Department of ViticultureSzent István UniversityBudapestHungary
  2. 2.Research Institute for Viticulture and EnologyEszterházy Károly UniversityEgerHungary
  3. 3.Faculty of Horticultural Science, Department of Biometrics and Agricultural InformaticsSzent István UniversityBudapestHungary
  4. 4.Faculty of Horticultural Science, Department of OenologySzent István UniversityBudapestHungary
  5. 5.Department of MicrobiologyUniversity of SzegedSzegedHungary
  6. 6.UMR 1332 Biologie du Fruit et Pathologie, INRAVillenave d’Ornon, CedexFrance
  7. 7.UMR 1332 Biologie du Fruit et PathologieUniversité de BordeauxVillenave d’Ornon, CedexFrance
  8. 8.Faculty of Horticultural Science, Department of Plant PathologySzent István UniversityBudapestHungary
  9. 9.Agricultural Research Council of South Africa, ARC Infruitec-NietvoorbijStellenboschSouth Africa

Personalised recommendations