Genome-wide identification of mildew resistance locus O (MLO) genes in tree model poplar (Populus trichocarpa): powdery mildew management in woody plants

Abstract

Poplars are economically important fast growing trees. They are exposed to broad range of fungal diseases like powdery mildew (PM). MLOs (mildew resistance locus O), as plant susceptibility genes, act as negative regulators and whose loss-of-functions confer complete resistance to PM disease. Herein, work identified the MLO gene family members in poplar, a woody model species. A total of 26 identified MLOs (annotated as PtMLO1–26) were distributed on 14 poplar chromosomes either individually or in groups of two to four. PtMLO genes encoded a polypeptide of 341–593 residues with a characteristic MLO domain structure. One tandem and eight segmental duplications were revealed in PtMLO genes. PtMLO proteins anchored at plasma membrane and had putative 5–9 TMDs with extracellular/cytosolic N- and C-terminuses. They were rich in leucine (9.1–12.9%), which is reported to play roles in defense response signaling. The C-terminal calmodulin-binding domain (CaMBD), reported to modulate the signaling mechanism in the defense response, was completely preserved in all PtMLOs, except PtMLO6. This domain was partially absent in PtMLO6 which is inferred to be a different MLO type or a pseudogene with a lost/impaired function in PM response. Besides, second and third cytoplasmic loops that are critical for PM-susceptibility were identified in PtMLOs. Particularly, PtMLO17, 18, 19, and 24 genes, inferred from Arabidopsis-poplar comparative phylogeny, were identified as potential candidates that may be involved in poplar-PM resistance. Notably, inductions of 14 PtMLO genes were detected in probes of microarray data such as GSE56865, GSE16417, and GSE23726 under different fungal infections indicating their involvements in plant defense. Overall, this work provided a basis for woody plant genomics for the effective and better management of poplar-PM disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ablazov, A., & Tombuloglu, H. (2016). Genome-wide identification of the mildew resistance locus O (MLO) gene family in novel cereal model species Brachypodium distachyon. European Journal of Plant Pathology, 145, 239–253.

    Article  CAS  Google Scholar 

  2. Bernsel, A., Viklund, H., Falk, J., Lindahl, E., von Heijne, G., & Elofsson, A. (2008). Prediction of membrane-protein topology from first principles. Proceedings of the National Academy of Sciences USA, 105, 7177–7181.

    Article  Google Scholar 

  3. Binkowski, T. A., Naghibzadeh, S., & Liang, J. (2003). CASTp: Computed atlas of surface topography of proteins. Nucleic Acids Research, 31, 3352–3355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F., & Schulze-Lefert, P. (1997). The barley MLO gene: A novel control element of plant pathogen resistance. Cell, 88, 695–705.

    Article  PubMed  Google Scholar 

  5. Chen, Y., Wang, Y., & Zhang, H. (2014). Genome-wide analysis of the mildew resistance locus o (MLO) gene family in tomato (Solanum lycopersicum L.) Plant Omics Journal, 7, 87–93.

    Google Scholar 

  6. Consonni, C., Humphry, M. E., Hartmann, H. A., Livaja, M., Durner, J., Westphal, L., Vogel, J., Lipka, V., Kemmerling, B., Schulze-Lefert, P., Somerville, S. C., & Panstruga, R. (2006). Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics, 38, 716–720.

    Article  PubMed  CAS  Google Scholar 

  7. Davis, S., & Meltzer, P. S. (2007). GEOquery: A bridge between the gene expression omnibus (GEO) and BioConductor. Bioinformatics, 23, 1846–1847.

    Article  PubMed  CAS  Google Scholar 

  8. DeLano, W. L. (2002). The PyMOL molecular graphics system. Palo Alto: DeLano Scientific LLC.

    Google Scholar 

  9. Deshmukh, R., Singh, V. K., & Singh, B. D. (2014). Comparative phylogenetic analysis of genome-wide Mlo gene family members from Glycine max and Arabidopsis thaliana. Molecular Genetics & Genomics, 289, 345–359.

    Article  CAS  Google Scholar 

  10. Devoto, A., Piffanelli, P., Nilsson, I., Wallin, E., Panstruga, R., Heijne, G. V., & Schulze-Lefert, P. (1999). Topology, subcellular localization, and sequence diversity of the MLO family in plants. Journal of Biological Chemistry, 274, 34993–35004.

    Article  PubMed  CAS  Google Scholar 

  11. Devoto, A., Hartmann, H. A., Piffanelli, P., Elliott, C., Simmons, C., Taramino, G., Goh, C. S., Cohen, F. E., Emerson, B. C., Schulze-Lefert, P., & Panstruga, R. (2003). Molecular phylogeny and evolution of the plant specific seven-transmembrane MLO family. Journal of Molecular Evolution, 56, 77–88.

    Article  PubMed  CAS  Google Scholar 

  12. Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30, 207–210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Elliott, C., Uller, J. M., Miklis, M., Bhat, R. A., Schulze-Lefert, P., & Panstruga, R. (2005). Conserved extracellular cysteine residues and cytoplasmic loop–loop interplay are required for functionality of the heptahelical MLO protein. Biochemical Journal, 385, 243–254.

    Article  PubMed  CAS  Google Scholar 

  14. Feechan, A., Jermakow, A. M., Torregrosa, L., Panstruga, R., & Dry, I. B. (2009). Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Functional Plant Biology, 35, 1255–1266.

    Article  Google Scholar 

  15. Fu, X. L., Lu, Y. G., Liu, X. D., & Li, J. Q. (2009). Crossability barriers in the interspecific hybridization between Oryza sativa and O. meyeriana. Journal of Integrative Plant Biology, 51, 21–28.

    Article  PubMed  Google Scholar 

  16. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). In M. W. John (Ed.), Protein identification and analysis tools on the ExPASy server (pp 571–607). The Proteomics Protocols Handbook: Humana.

    Google Scholar 

  17. Geourjon, C., & Deleage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11, 681–684.

    PubMed  CAS  Google Scholar 

  18. Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative platform for green plant genomics. Nucleic Acids Research, 40, D1178–D1186.

    Article  PubMed  CAS  Google Scholar 

  19. Gu, Z., Cavalcanti, A., Chen, F. C., Bouman, P., & Li, W. H. (2002). Extent of gene duplication in the genomes of drosophila, nematode, and yeast. Molecular Biology and Evolution, 19, 256–262.

    Article  PubMed  CAS  Google Scholar 

  20. Guo, A. Y., Zhu, Q. H., Chen, X., & Luo, J. C. (2007). [GSDS: a gene structure display server]. Yi chuan= Hereditas/Zhongguo yi chuan xue hui bian ji 29, 1023–1026.

  21. Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  22. Jung, E. H., Jung, H. W., Lee, S. C., Han, S. W., Heu, S., & Hwang, B. K. (2004). Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicum annuum. Biochimica et Biophysica Acta, 1676, 211–222.

    Article  PubMed  CAS  Google Scholar 

  23. Kêdzierski, L., Montgomery, J., Curtis, J., & Handman, E. (2004). Leucinerich repeats in host–pathogen interactions. Archivum Immunologiae et Therapiae Experimentalis, 52, 104–112.

    PubMed  Google Scholar 

  24. Kemmerling, B., Schwedt, A., Rodriguez, P., Mazzotta, S., Frank, M., Qamar, S. A., Mengiste, T., Betsuyaku, S., Parker, J. E., Müssig, C., Thomma, B. P., Albrecht, C., de Vries, S. C., Hirt, H., & Nürnberger, T. (2007). The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Current Biology, 17, 1116–1122.

    Article  PubMed  CAS  Google Scholar 

  25. Kim, M. C., Lee, S. H., Kim, J. K., Chun, H. J., Choi, M. S., Chung, W. S., Moon, B. C., Kang, C. H., Park, C. Y., Yoo, J. H., Kang, Y. H., Koo, S. C., Koo, Y. D., Jung, J. C., Kim, S. T., Schulze-Lefert, P., Lee, S. Y., & Cho, M. J. (2002a). MLO, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Journal of Biological Chemistry, 277, 19304–19314.

    Article  PubMed  CAS  Google Scholar 

  26. Kim, M. C., Panstruga, R., Elliott, C., Müller, J., Devoto, A., Yoon, H. W., Park, H. C., Cho, M. J., & Schulze-Lefert, P. (2002b). Calmodulin interacts with MLO protein to regulate defense against mildew in barley. Nature, 416, 447–450.

    Article  PubMed  CAS  Google Scholar 

  27. Konishi, S., Sasakuma, T., & Sasanuma, T. (2010). Identification of novel Mlo family members in wheat and their genetic characterization. Genes & Genetic Systems, 85, 167–175.

    Article  CAS  Google Scholar 

  28. Li, Q., & Zhu, H. (2008). Molecular evolution of the Mlo gene family in Oryza sativa and their functional divergence. Gene, 409, 1–10.

    Article  CAS  Google Scholar 

  29. Liu, L. P., Qu, J. W., Yi, X. Q., & Huang, H. H. (2017). Genome-wide identification, classification and expression analysis of the mildew resistance locus O (MLO) gene family in sweet orange (Citrus sinensis). Brazilian Archives of Biology and Technology, 60, e17160474.

    Article  Google Scholar 

  30. Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Cα geometry: ɸ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics, 50, 437–450.

    Article  CAS  Google Scholar 

  31. Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., et al. (2011). CDD: A conserved domain database for the functional annotation of proteins. Nucleic Acids Research, 39, D225–D229.

    Article  PubMed  CAS  Google Scholar 

  32. Newcombe, G. (1996). In: Stettler, R., Bradshaw, T., Heilman, P., Hinckley, T. (Eds.). The specificity of fungal pathogens of Populus (pp 223–246). Biology of populus and its implications for management and conservation. Canada: NRC Research Press.

  33. Osakabe, Y., Maruyama, K., Seki, M., Satou, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2005). Leucine-rich repeat receptor-like Kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell, 17, 1105–1119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Parlevliet, J. E. (1993). What is durable resistance, a general outline. In T.H. Jacobs & J.E. Parlevliet (Eds.), Durability of Disease Resistance (23–29) Dordrecht: Kluwer.

  35. Pavan, S., Jacobsen, E., Visser, R. G., & Bai, Y. (2010). Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Molecular Breeding, 25, 1–12.

    Article  PubMed  Google Scholar 

  36. Pessina, S., Pavan, S., Catalano, D., Gallotta, A., Visser, R. G., Bai, Y., Malnoy, M., & Schouten, H. J. (2014). Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genomics, 15, 618.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Piffanelli, P., Zhou, F., Casais, C., Orme, J., Schaffrath, U., Collins, N., Panstruga, R., & Schulze-Lefert, P. (2002). The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiology, 129, 1076–1085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pinon, J., & Frey, P. (2005). Interactions between poplar clones and Melampsora populations and their implications for breeding for durable resistance. In M. H. Pei & A. R. McCracken (Eds.), Rust diseases of willow and poplar (pp. 139–154). Wallingford: CAB International.

    Google Scholar 

  39. Reddy, V. S., Ali, G. S., & Reddy, A. S. N. (2003). Characterization of a pathogen-induced calmodulin binding protein: Mapping of four Ca2+−dependent calmodulin-binding domains. Plant Molecular Biology, 52, 143–159.

    Article  PubMed  CAS  Google Scholar 

  40. Reinstädler, A., Müller, J., Czembor, J. H., Piffanelli, P., & Panstruga, R. (2010). Novel induced MLO mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley MLO protein. BMC Plant Biology, 10, 31–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rispail, N., Merino, P., & Rubiales, D. (2013). Identification and characterization of mlo gene family members in the model legume M. truncatula. https://digital.csic.es/handle/10261/97322.

  42. Romiti, M. (2010). Entrez Nucleotide and Entrez Protein FAQs. Gene, 1, 270.

    Google Scholar 

  43. Saito, H., Honma, T., Minamisawa, T., Yamazaki, K., Noda, T., Yamori, T., & Shiba, K. (2004). Synthesis of functional proteins by mixing peptide motifs. Chemistry & Biology, 11, 765–773.

    Article  CAS  Google Scholar 

  44. Severoglu, Z., & Ozyigit, I. I. (2012). Powdery mildew disease in some natural and exotic plants of Istanbul, Turkey. Pakistan Journal of Botany, 44, 387–393.

    Google Scholar 

  45. Shen, Q., Zhao, J., Du, C., Xiang, Y., Cao, J., & Qin, X. (2012). Genome-scale identification of MLO domain-containing genes in soybean (Glycine max L. Merr.) Genes & Genetic Systems, 87, 89–98.

    Article  CAS  Google Scholar 

  46. Singh, V. K., Singh, A. K., Chand, R., & Singh, B. D. (2012). Genome wide analysis of disease resistance MLO gene family in sorghum (Sorghum bicolor L. Moench). Journal of Plant Genomics, 2, 18–27.

    CAS  Google Scholar 

  47. Sjödin, A., Street, N. R., Sandberg, G., Gustafsson, P., & Jansson, S. (2009). The populus genome integrative explorer (PopGenIE): A new resource for exploring the populus genome. New Phytologist, 182, 1013–1025.

    Article  PubMed  CAS  Google Scholar 

  48. Smyth, G. K. (2005). Limma: Linear models for microarray data. In R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, & W. Huber (Eds.), Bioinformatics and computational biology solutions using R and Bioconductor (pp. 397–420). New York: Springer.

    Google Scholar 

  49. Sonnhammer, E. L., Eddy, S. R., & Durbin, R. (1997). Pfam: A comprehensive database of protein domain families based on seed alignments. Proteins-Structure Function and Genetics, 28, 405–420.

    Article  CAS  Google Scholar 

  50. Takken, F. L., Albrecht, M., & Tameling, W. I. (2006). Resistance proteins: Molecular switches of plant defense. Current Opinion of Plant Biology, 9, 383–390.

    Article  CAS  Google Scholar 

  51. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Timothy, L., Mikael, B. B., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37, 202–208.

    Article  CAS  Google Scholar 

  54. Torii, K. U. (2004). Leucine-rich repeat receptor kinases in plants: Structure, function, and signal transduction pathways. International Review of Cytology, 234, 1–46.

    Article  PubMed  CAS  Google Scholar 

  55. Yang, S., Zhang, X., Yue, J. X., Tian, D., & Chen, J. Q. (2008). Recent duplications dominate NBS-encoding gene expansion in two woody species. Molecular Genetics & Genomics, 280, 187–198.

    Article  CAS  Google Scholar 

  56. Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER suite: Protein structure and function prediction. Nature Methods, 12, 7–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yu, C. S., Chen, Y. C., Lu, C. H., & Hwang, J. K. (2006). Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics, 64, 643–651.

    Article  CAS  Google Scholar 

  58. Zheng, Z., Nonomura, T., Appiano, M., Pavan, S., Matsuda, Y., Toyoda, H., Wolters, A. M. A., Visser, R. G. F., & Bai, Y. (2013). Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS One, 8, e70723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhou, S. J., Jing, Z., & Shi, J. L. (2013). Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus. Genetics and Molecular Research, 12, 6565–6578.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Filiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 9430 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Filiz, E., Vatansever, R. Genome-wide identification of mildew resistance locus O (MLO) genes in tree model poplar (Populus trichocarpa): powdery mildew management in woody plants. Eur J Plant Pathol 152, 95–109 (2018). https://doi.org/10.1007/s10658-018-1454-3

Download citation

Keywords

  • Poplar
  • Powdery mildew
  • MLO
  • Susceptibility gene
  • Fungal disease