Skip to main content
Log in

In vitro bacterization of banana (Musa spp.) with native endophytic and rhizospheric bacterial isolates: Novel ways to combat Fusarium wilt

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Compared to conventional planting material, micropropagated plantlets are highly susceptible to Fusarium wilt because they are free from beneficial root inhabitants. We aimed to introduce mixtures of beneficial microbes in the plantlets in the rooting medium under in vitro conditions rather than by field applications. Endophytes and rhizobacteria from different banana cultivars and plantation areas were screened and characterized. Under in vitro conditions, banana tissue culture plantlets were bacterized with the prospective endophytes, Bacillus subtilis strain EPB56 and EPB10 and the rhizobacteria, Pseudomonas fluorescens strain Pf1 and effects of in vitro bacterization were investigated against Fusarium oxysporum f. sp. cubense race 1 under glasshouse and field conditions. Inoculation of bananas during micropropagation allowed for the omission of minerals and salts as well as vitamins from the growing media while resulting in plantlets close to double size compared to the controls with full strength media. All endophyte and rhizobacteria strains tested resulted in significant reductions in Fusarium infection in the glasshouse and field and in significantly better plant growth. The three-way combination of bacteria resulted in 78% disease reduction and more than doubled the yields compared to the untreated controls across two field experiments. Three-way inoculation led to yields of 23 and 24 kg/ bunch compared to chemical disease control (13; 15 kg/bunch) and untreated controls (10; 13 kg/bunch) in the two field experiments. Under glasshouse conditions, activity of defence enzymes was significantly increased by all inoculation treatments. Inoculation in vitro led to the establishment of the microorganisms in the plant system before delivering to the farming community. Micropropagation combined with the establishment of a beneficial microbial consortium should complement the micropropagated plants for easier adaptation under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdul Baki, A. A., & Anderson, J. D. (1973). Vigour determination in soybean seed by multiple criteria. Crop Science, 13, 630–633.

    Article  Google Scholar 

  • Albuquerque, V.V., Terao, D., & Mariano, R.L.R. (2003). Growth-promotion and bio control of Fusarium wilt in micropropagated plantlets of Musa sp.6th international PGPR workshop, pp 3–8.

  • Baldotto, L. E. B., Baldotto, M. A., Olivares, F. L., Viana, A. P., & Bressan-Smith, R. (2010). Seleção de bactériaspromotoras de crescimento no abacaxizeiro (Ananas comosus L. Merrill) cultivar Vitóriaduranteaaclimatização. Revista Brasileira de Ciência do Solo, 34, 349–360.

    Article  CAS  Google Scholar 

  • Barka, E. A., Gognies, S., Nowak, J., Audran, J., & Belarbi, A. (2002). Inhibitory effect of endophyte bacteria on Botrytis cinereaand its influence to promote the grapevine growth. Biological Control, 24, 135–142.

    Article  Google Scholar 

  • Bassil, N. V., Proebsting, W. M., Moore, L. W., & Lightfoot, D. A. (1991). Propagation of hazelnut stem cuttings using Agrobacterium rhizogens. Horticultural Science, 26(8), 1058–1060.

    Google Scholar 

  • Belid El-Moshaty, F. I. B., Pike, S. M., Novacky, A. J., & Seghal, O. P. (1993). Lipid peroxidation and super oxide production in cowpea (Vignaunguiculata) leaves infected with Tobacco ring spot virus or Southern bean mosaic virus. Physiological and Molecular Plant Pathology, 43, 109–119.

    Article  Google Scholar 

  • Boller, T., & Mauch, F. (1988). Colorimetric assay for chitinase. Methods in Enzymology, 161, 430–435.

    Article  CAS  Google Scholar 

  • Chaparro-Giraldo, A., Barata, R. M., Chabregas, S. M., Azevedo, R. A., & Silva-Filho, M. C. (2000). Soybean leg haemoglobin targeted to potato chloroplasts influences growth and development of transgenic plants. Plant Cell Reports, 19, 961–965.

    Article  CAS  Google Scholar 

  • Conrath, U., Pieterse, C. M. J., & Mauch-Mani, B. (2002). Priming in plant-pathogen interactions. Trends in Plant Science, 7, 210–216.

    Article  CAS  PubMed  Google Scholar 

  • Dita, M., Schilly, A., Vargas, J., Chaves, N., Guzm’an, M., Sandoval, J., & Staver, C. (2014).Endophyte microbiome of banana roots reveals high diversity and potential for agricultural uses. In: Bridging the gap between increasing knowledge and decreasing resources, Tropentag, September 17–19, 2014, Prague, Czech Republic.

  • Esitken, A., Karlidag, H., Ercisli, S., Turan, M., & Shin, F. (2003). The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Australian Journal of Agricultural Research, 54, 377–380.

    Article  Google Scholar 

  • Fishal, E. M. M., Meon, S., & Yun, W. M. (2010). Induction of tolerance to Fusarium wilt and defense related mechanisms in the plantlets of susceptible Berangan banana pre inoculated with pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3). Agricultural Sciences in China, 9, 1140–1149.

    Article  Google Scholar 

  • Frommel, M. I., Nowak, J., & Lazarovits, G. (1991). Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum Ssp. tuberosum) as affected by a non fluorescent Pseudomonas sp. Plant Physiology, 96, 928–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedure for agricultural research. New York: John Wiley and Sons.

    Google Scholar 

  • Gross, G. G. (1980). The biochemistry of lignification. Advances in Botanical Research, 8, 25–63.

    Article  CAS  Google Scholar 

  • Hammerschmidt, R., Nuckles, E. M., & Kuc, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiology and Plant Pathology, 20, 73–82.

    Article  CAS  Google Scholar 

  • Harish, S., Kavino, M., Kumar, N., Balasubramanian, P., & Samiyappan, R. (2009). Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biological Control, 51, 16–25.

    Article  CAS  Google Scholar 

  • Herre, E. A., Mejía, L. C., Kyllo, D. A., Rojas, E., Maynard, Z., Butler, A., & Van Bael, S. A. (2007). Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology, 88, 550–558.

    Article  PubMed  Google Scholar 

  • Ho, Y. N., Chiang, H. M., Chao, C. P., Su, C. C., Hsu, H. F., Guo, C. T., Hsieh, J. L., & Huang, C. C. (2015). In plantabiocontrol of soil borne Fusarium wilt of banana through a plant endophytic bacterium, Burkholderia cenocepacia 869T2. Plant and Soil, 387, 295–306.

    Article  CAS  Google Scholar 

  • ISTA. (1993). Proceedings of the international seed testing association, international rules for seed testing. Seed Science and Technology, 21, 25–30.

    Google Scholar 

  • Jaizme-Vega, M. D. C., Romero, A. S. R., & Guerra, M. S. P. (2004). Potential use of rhizobacteria from the Bacillus genus to stimulate the plant growth of micropropagated bananas. Fruits, 59, 83–90.

    Article  Google Scholar 

  • Kavino, M., Harish, S., Kumar, N., Saravanakumar, D., Damodaran, T., Soorianathasundaram, K., & Samiyappan, R. (2007). Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biology and Biochemistry, 39, 1087–1098.

    Article  CAS  Google Scholar 

  • Kavino, M., Harish, S., Kumar, N., Saravanakumar, D., & Samiyappan, R. (2008). Induction of systemic resistance in banana (Musa spp.) against banana bunchy top virus (BBTV) by combining chitin with root-colonizing Pseudomonasfluorescens strain CHA0. European Journal of Plant Pathology, 120, 353–362.

    Article  CAS  Google Scholar 

  • Kavino, M., Harish, S., Kumar, N., Saravanakumar, D., & Samiyappan, R. (2010a). Effect of chitinolytic PGPR on growth yield and physiological attributes of banana (Musa spp.) under field conditions. Applied Soil Ecology, 45, 71–77.

    Article  Google Scholar 

  • Kavino, M., Harish, S.,Saravanakumar, D., Jeyakumar, P., Kumar, N., & Samiyappan, R. (2010b). Biological hardening - a new approach to enhancing resistance against biotic and abiotic stresses in micropropagated plants. In: LeenaTripathi (ed) Tree and forestry science and biotechnology, special issues: Bananas, plantains and Ensete (in co-operation with IITA, international institute of Tropical Agriculture) pp. 11–21.

  • Kokalis-Burelle, N., Kloepper, J. W., & Reddy, M. S. (2006). Plant growth-promoting rhizobacteria as transplant amendment and their effects on indigenous rhizosphere microorganisms. Applied Soil Ecology, 31, 91–100.

    Article  Google Scholar 

  • Kosuge, T. (1969). The role of phenolics in host response to infection. Annual Review of Phytopathology, 7, 195–222.

    Article  CAS  Google Scholar 

  • Li, C. H., Shi, L., Han, Q., Hu, H. L., Zhao, M. W., Tang, C. M., & Li, S. P. (2012). Biocontrol of verticillium wilt and colonization of cotton plants by an endophytic bacterial isolate. Journal of Applied Microbiology, 113, 641–651.

    Article  PubMed  Google Scholar 

  • Lian, J., Wang, Z., Cao, L., Tan, H., Inderbitzin, P., Jiang, Z., & Zhou, S. (2009). Artificial inoculation of banana tissue culture plantlets with indigenous endophytes originally derived from native banana plants. Biological Control, 51, 427–434.

    Article  Google Scholar 

  • Mayer, A. M., Harel, E., & Shaul, R. B. (1965). Assay of catechol oxidase a critical comparison of methods. Phytochemistry, 5, 783–789.

    Article  Google Scholar 

  • Mc Kinney, H. H. (1923). A new system of grading plant diseases. Journal of Agricultural Research, 26, 195–218.

    Google Scholar 

  • Melnick, R. L., Zidack, N. K., Bailey, B. A., Maximova, S. N., Guiltinan, M., & Backman, P. A. (2008). Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biological Control, 46, 46–56.

    Article  Google Scholar 

  • Mucciarelli, M., Scannerini, S., Bertea, C., & Maffei, M. (2003). In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytologist, 158, 579–591.

    Article  Google Scholar 

  • Murashige, V. K., & Skoog, F. (1962). A revised medium for rapid growth and biomass assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Nowak, J., Asiedu, S.K., Bensalim, S., Richards, J., Stewart, A., Smith, C., Stevens, D., & Sturz, A.V. (1997). From laboratory to applications: Challenges and progress with in vitro dual cultures of potato and beneficial bacteria. In: Pathogen and microbial contamination Management in Micropropagationed Cassells, A.C. pp. 321–329. Kluwer Academic Publishers, Dordrecht.

  • Pan, S. Q., Ye, X. S., & Kuc, J. (1991). Association of β-1, 3-glucanase activity and isoform pattern with systemic resistance to blue mold in tobacco induced by stems injection with Pernospora tabacina or leaf inoculation with Tobacco mosaic virus. Physiological and Molecular Plant Pathology, 39, 25–39.

    Article  CAS  Google Scholar 

  • Panigrahi, S., Lakshmi, K. A., Umesh, N., & Khan, W. A. (2014). Enhanced growth in the clonal propagated plants. Helix, 4, 568–573.

    Google Scholar 

  • Ploetz, R. C., Haynes, J. L., & Vazquez, A. (1999). Responses of new banana accessions in South Florida to Panama disease. Crop Protection, 18, 445–449.

    Article  Google Scholar 

  • Pocasangre, L. 2000. Biological enhancement of tissue culture plantlets with endophytic fungi for the control of the burrowing nematode Radopholus similis and the panama disease (Fusarium oxysporum f. Sp. cubense).PhD thesis, University of Bonn, Germany.

  • Prieto, P., Schiliro, E., Maldonado-Gonzalez, M. M., Valderrama, R., Barroso-Albarracin, J. B., & Mercado-Blanco, J. (2011). Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microbial Ecology, 62, 435–445.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quadt-Hallman, A., Hallman, J., & Kloepper, J. W. (1997). Bacterial endophytes in cotton: Location and interaction with other plant associated bacteria. Canadian Journal of Microbiology, 43, 254–259.

    Article  Google Scholar 

  • Ross, W. W., & Sederoff, R. R. (1992). Phenylalanine ammonia lyase from loblolly pine: Purification of the enzyme and isolation of complementary DNA clones. Plant Physiology, 98, 380–386.

    Article  Google Scholar 

  • Saravanan, T. (2002). Biological control of Panama wilt of banana (Musa spp.) incited by Fusariumoxysporumf. Sp. cubense (E.F. Smith) Snyder & Hansen. Ph.D. Thesis, TNAU. Coimbatore, pp. 239.

  • Saravanan, T., Bhaskaran, R., & Muthusamy, M. (2004). Pseudomonas fluorescens induced enzymological changes in banana roots (cv. Rasthali) against Fusarium wilt disease. Plant Pathology Journal, 3, 72–80.

    Article  Google Scholar 

  • Sariah, M., Lim, C. L., & Tariq, S. A. (2001). Use of biochemical markers as a measure of resistance towards Fusarium wilt of banana. In A. B. Molina, N. H. NikMasdek, & K. W. Liew (Eds.), Banana Fusariumwilt management towards sustainable cultivation (pp. 243–249). Los banos: INIBAP-Asia and Pacific Network.

    Google Scholar 

  • Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661–686.

    Article  PubMed  Google Scholar 

  • Shi, J., Liu, A., Li, X., Feng, S., & Chen, W. (2010). Identification of endophytic bacterial train MGP1 selected from papaya and its biocontrol effects on pathogens infecting harvested papaya fruit. Journal of the Science of Food and Agriculture, 90, 227–232.

    Article  CAS  PubMed  Google Scholar 

  • Sikora, R. A., Niere, B., & Kimenju, J. (2003). Endophytic microbial biodiversity and plant nematode management in Africa agriculture. In P. Neuenschwander, C. Borgemeister, & J. Langewaid (Eds.), Biological control in IPM Systems in Africa. Wallingford: CABI.

    Google Scholar 

  • Smith, L., Keefe, D. O., Smith, M., & Hamill, S. (2003). The benefits of applying rhizobacteria to tissue cultured bananas. Banana Topics Newsletter, 33, 1–4.

    Google Scholar 

  • Vavrina, C. S. (1996). Summer plant house soil temperature and jalapeno germination. Citrus and Vegetable Magazine, 60(6), 49–50.

    Google Scholar 

  • Wilson, D. (1995). Endophyte - the evolution of a term, and clarification of its use and definition. Oikos, 73, 274–276.

    Article  Google Scholar 

  • Wulff, E. G., van Vuurde, J. W. L., & Hockenhull, J. (2003). The ability of the biocontrol agent Bacillus subtilis, strain BB, to colonize vegetable brassicas endophytically following seed inoculation. Plant and Soil, 255, 463–474.

    Article  CAS  Google Scholar 

  • Yuan, J., Ruan, Y., Wang, B., Zhang, J., Wassem, R., Huang, Q., & Shen, Q. (2013). Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciensNJN-6-enriched bio-organic fertilizer supressed Fusarium wilt and promoted the growth of banana plants. Journal of Agricultural and Food Chemistry, 61, 3774–3780.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, J., Yu, L., Ling, N., Raza, W., Shen, Q., & Huang, Q. (2015). Plant-growth-promoting traits and antifungal potential of the Bacillus amyloliquefaciens YL-25. Biocontrol Science and Technology, 25(3), 276–290.

    Article  Google Scholar 

  • Zieslin, N., & Ben-Zaken, R. (1993). Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiology and Biochemistry, 31, 333–339.

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Department of Science and Technology, SERC Fast Track Scheme for Young Scientists program (DST-FAST TRACK), Ministry of Science and Technology, New Delhi, India for funding a Young Scientist fellowship that enabled this research work to be undertaken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kavino.

Ethics declarations

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Not arising.

Informed consent

Not arising.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavino, M., Manoranjitham, S.K. In vitro bacterization of banana (Musa spp.) with native endophytic and rhizospheric bacterial isolates: Novel ways to combat Fusarium wilt. Eur J Plant Pathol 151, 371–387 (2018). https://doi.org/10.1007/s10658-017-1379-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1379-2

Keywords

Navigation