European Journal of Plant Pathology

, Volume 151, Issue 1, pp 57–72 | Cite as

Bimetallic blends and chitosan nanocomposites: novel antifungal agents against cotton seedling damping-off

  • Kamel A. Abd-Elsalam
  • Alexander Yu. Vasil’kov
  • Ernest E. Said-Galiev
  • Margarita S. Rubina
  • Alexei R. Khokhlov
  • Alexander V. Naumkin
  • Eleonora V. Shtykova
  • Mousa A. Alghuthaymi
Article
  • 171 Downloads

Abstract

Phytopathological studies of chitosan nanocomposites are mainly focused on in vitro efficiency, so it is essential to perform a complementary greenhouse assay to find eco-friendly alternatives for plant disease management. In the present study, Cu-chitosan and Zn-chitosan nanocomposites were prepared by reduction of metal precursors in the presence of chitosan in sc CO2 medium and deposition of organosol on chitosan, respectively. Physicochemical properties of the nanocomposites were characterized by X-ray fluorescence analysis (XRF), Small angles X-ray Scattering (SAXS), X-ray Photoelectron spectroscopy (XPS), and Transmission electron microscopy (TEM). The bimetallic blends (BBs) based on nanoscale Cu(OH)2 were obtained through simple precipitation and grinding methods. In vitro and in vivo studies of the antifungal activity of Cu-chitosan, Zn-chitosan and BBs at concentrations of 30, 60, and 100 μg ml−1 were conducted against two anastomosis groups of Rhizoctonia solani for control of cotton seedling damping-off. Effect of metal-chitosan nanocomposites at 100 μg ml−1 combined with Cu-tolerant Trichoderma longibrachiatum strains was also evaluated for control of cotton seedling damping-off under greenhouse conditions. The BBs and Cu-chitosan nanocomposite showed the highest antifungal efficacy against both anastomosis groups of R. solani in vitro. These results indicated that BBs, Cu-chitosan nanocomposite, and BBs combined with Trichoderma may suppress cotton seedling disease caused by R. solani in vivo. The evaluation of R. solani in a greenhouse with a Trichoderma strain showed synergistic inhibitory effect with BBs. Light micrographs of mycelia treated with BBs showed the disruption of the hyphal structures. The interaction of the nanocomposites with DNA isolated from the exposed fungal cells, by means of bonding and/or degradation, was also investigated. DNA interaction in terms of binding and degradation for treated DNA with BBs and chitosan nanocomposites was demonstrated. The results showed the absence of DNA amplification by a microsatellite primed PCR.

Keywords

Biocompatibility Rhizoctonia solani Trichoderma longibrachiatum Bimetallic nanocomposite Cu-chitosan Zn-chitosan Nanoscale Cu(OH)2 

Notes

Acknowledgments

The current work was supported by the Science and Technology Development Fund (STDF), Egypt (STDF- RFBR program) [grant no. 13791]. Also, this work was partially funded by Russian Foundation for Basic Research grant (RFBR-15-53-61030).

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

All the Authors declare that they have no conflict of interest.

References

  1. Abd-El-Khair, H., & El-Gamal Nadia, G. (2011). Effects of aqueous extracts of some plant species against Fusarium solani and Rhizoctonia solani in Phaseolus vulgaris plants. Archives of Phytopathology and Plant Protection, 44, 1–16.CrossRefGoogle Scholar
  2. Abd-Elsalam, K. A., & Alghuthaymi, M. A. (2015). Nanobiofungicides: are they the next-generation of fungicides? J Nanotech Mater Sci, 2, 1–3.Google Scholar
  3. Abd-Elsalam, K. A., & Khokhlov, A. R. (2015). Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Applied Nanoscience, 5, 255–265.CrossRefGoogle Scholar
  4. Abd-Elsalam, K. A., Asran-Amal, A., & El-Samawaty, A. (2007). Isolation of high quality DNA from cotton and its fungal pathogens. Journal of Plant Diseases and Protection, 114, 113–116.CrossRefGoogle Scholar
  5. Ait Barka, E., Eullaffroy, P., Clément, C., & Vernet, G. (2004). Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, 22, 608–614.CrossRefPubMedGoogle Scholar
  6. Bahkali, A. H., Abd-Elsalam, K. A., Guo, J.-R., Khiyami, M. A., & Verreet, J.-A. (2012). Characterization of Novel Di-, Tri-, and Tetranucleotide microsatellite primers suitable for genotyping various plant pathogenic fungi with special emphasis on Fusaria and Mycospherella graminicola. International Journal of Molecular Sciences, 13, 2951–2964.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barreca, D., Comini, E., Ferrucci, A. P., Gasparotto, A., Maccato, C., Maragno, C., Sberveglieri, G., & Tondello, E. (2007a). First example of ZnO-TiO2 nanocomposites by chemical vapor deposition: structure, morphology, composition, and gas sensing performances. Chemistry of Materials, 19, 5642–5649.CrossRefGoogle Scholar
  8. Barreca, D., Gasparotto, A., Maccato, C., Maragno, C., & Tondello, E. (2007b). ZnO nanoplatelets obtained by chemical vapor deposition, studied by XPS. Surface Science Spectra, 14, 19–26.CrossRefGoogle Scholar
  9. Borkow, G., & Gabbay, J. (2005). Copper as a biocidal tool. Current Medicinal Chemistry, 12, 2163–2175.CrossRefPubMedGoogle Scholar
  10. Brunel, F., Gueddari, N. E., & Moerschbacher, B. M. (2013). Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohydrate Polymers, 92, 1348–1356.CrossRefPubMedGoogle Scholar
  11. Dey, K. K., Kumar, A., Shanker, R., Dhawan, A., Wan, M., Yadav, R. R., & Srivastava, A. K. (2012). Growth morphologies, phase formation, optical & biological responses of nanostructures of CuO and their application as cooling fluid in high energy density devices. RSC Advances, 2, 1387–1403.CrossRefGoogle Scholar
  12. El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8, 968–987.CrossRefPubMedPubMedCentralGoogle Scholar
  13. El Hassni, M., El Hadrami, A., Daayf, F., Barka, E. A., & El Hadrami, I. (2004). Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinis and elicitor of defence reactions in date palm roots. Phytopathologia Mediterranea, 43, 195–204.Google Scholar
  14. Fedotov, A. N., Simonov, A. P., Popov, V. K., & Bagratashvili, V. N. (1997). Dielectrometry in supercritical fluids. A new approach to the measurement of solubility and study of dipole moment behavior of polar compounds. The Journal of Physical Chemistry, 101, 2929–2932.CrossRefGoogle Scholar
  15. Hernández-Lauzardo, A., Velázquez, M., & Guerra-Sánchez, M. (2011). Current status of action mode and effect of chitosan against phytopathogens fungi. African Journal of Microbiology Research, 5, 4243–4247.Google Scholar
  16. Ingle, A. P., Duran, N., & Rai, M. (2013). Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Applied Microbiology and Biotechnology, 98, 1001–1009.CrossRefPubMedGoogle Scholar
  17. Jans, D., Katia, P., Dian, S., Gerard, B., & Bertrand, G. (2014). Mycotoxin reduction in animal diets. In J. F. Leslie, & A. F. Logrieco (Eds.), Mycotoxin.Google Scholar
  18. Joselito, D., & Soytong, K. (2014). Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. Journal of Agricultural Technology, 10, 823–831.Google Scholar
  19. Katiyar, D., Hemantarajan, A., & Sing, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 20, 1–9.CrossRefGoogle Scholar
  20. Kaur, P., Thakur, R., & Choudhary, A. (2012). An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. International Journal of Scientific & Technology Research, 1, 83–86.Google Scholar
  21. Kaur, P., Thakur, R., Barnela, M., Chopra, M., Manujaand, A., & Chaudhury, A. (2015). Synthesis, characterization and in vitro evaluation of cytotoxicity and antimicrobial activity of chitosan-metal nanocomposites. Journal of Chemical Technology and Biotechnology, 90, 867–873.CrossRefGoogle Scholar
  22. Laflamme, P., Benhamou, N., Bussières, G., & Dessureault, M. (1999). Differential effect of chitosan on root rot fungal pathogens in forest nurseries. Canadian Journal of Botany, 77, 1460–1468.CrossRefGoogle Scholar
  23. Lindquist, J. M., & Hemminger, J. C. (1989). High energy resolution x-ray photoelectron spectroscopy studies of tetracyanoquinodimethane charge transfer complexes with copper, nickel, and lithium. Chemistry of Materials, 1, 72–78.CrossRefGoogle Scholar
  24. Liu, H., Tian, W. X., Li, B., Wu, G. X., Ibrahim, M., Tao, Z. Y., Wang, Y. L., Xie, G. L., Li, H. Y., & Sun, G. C. (2012). Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnology Letters, 34, 2291–2298.CrossRefPubMedGoogle Scholar
  25. Ma, L.-J., Li, Y.-Y., Wang, L.-L., Li X.-M., Liu, T., & Bu, N. (2014). Germination and physiological response of wheat (Triticum aestivum) to pre-soaking with oligochitosan. International Journal of Agriculture and Biology, 16, 766–770.Google Scholar
  26. Marquez, I. G., Akuaku, J., Cruz, I., Cheetham, J., Golshani, A., & Smith, M. L. (2013). Disruption of protein synthesis as antifungal mode of action by chitosan. International Journal of Food Micobiology, 164, 108–112.CrossRefGoogle Scholar
  27. Moreno-Olivas, F., Gant, V. U. J., Johnson, K. L., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). Random amplified polymorphic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo. Journal of Zhejiang University: Science A, 15, 618–623.CrossRefGoogle Scholar
  28. Muzzarelli, R. A. A., Muzzarelli, C., Tarsi, R., Miliani, M., Gabbanelli, F., & Cartolari, M. (2001). Fungistatic activity of modified chitosans against Saprolegnia parasitica. Biomacromolecules, 2, 165–169.CrossRefPubMedGoogle Scholar
  29. Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W., & Powell, C. J. (2012). NIST X-ray photoelectron spectroscopy database, version 4.1. Gaithersburg: National Institute of Standards and Technology http://srdata.nist.gov/xps/.Google Scholar
  30. Nikitin, L. N., Vasil’kov, A. Y., Banchero, M., Manna, L., Naumkin, A. V., Podshibikhin, V. L., Abramchuk, S. S., Buzin, M. I., Korlyukov, A. A., Khokhlov, A. R. (2011). Composite materials for medical purposes based on polyvinylpyrrolidone modified with ketoprofen and silver nanoparticles. Russian Journal of Physical Chemistry A, 85, 1190–1195.Google Scholar
  31. Nikraftar, F., Taheri, P., Rastegar, M. F., & Tarighi, S. (2013). Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms. Physiological and Molecular Plant Pathology, 81, 74–83.Google Scholar
  32. Ouda, S. M. (2014). Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternate and Botrytis cinerea. Research Journal of Microbiology, 9, 34–42.CrossRefGoogle Scholar
  33. Palza, H. (2015). Antimicrobial polymers with metal nanoparticles. International Journal of Molecular Sciences, 16, 2099–2116.Google Scholar
  34. Papavizas, G. C., (1984). Strain of Trichoderma viride to control Fusarium wilt. U.S. Patent No. 4,489,161, 18 Dec 1984.Google Scholar
  35. Reddy, M. V., Arul, J., Angers, P., & Couture, L. (1999). Chitosan treatment of wheat seeds induces resistance to Fusarium graminearun and improves seed quality. Journal of Agricultural and Food Chemistry, 47, 1208–1121.CrossRefGoogle Scholar
  36. Rubina, M. S., Kamitov, E. E., Zubavichus, Y. V., Peters, G. S., Naumkin, A. V., Suzer, S., & Vasil’kov, A. Y. (2016). Collagen-chitosan scaffold modified with Au and Ag nanoparticles: synthesis and structure. Applied Surface Science, 366, 365–371.CrossRefGoogle Scholar
  37. Saharan, V., Mehrotra, A., Khatik, R., Rawal, P., Sharma, S. S., & Pal, A. (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules, 62, 677–683.CrossRefPubMedGoogle Scholar
  38. Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., Raliya, R., & Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, 75, 346–353.CrossRefPubMedGoogle Scholar
  39. Said-Galiev, E. E., Gamzazade, A. I., Grigor’ev, T. E., Khokhlov, A. R., Bakuleva, N. P., Lyutova, I. G., Shtykova, E. V., Dembo, K. A., & Volkov, V. V. (2011). Synthesis of Ag and Cu-chitosan as an metal-polymer nanocomposites in supercritical carbon dioxide medium and study of their structure and antimicrobial activity. Nanotechnologies in Russia, 6, 341–352.CrossRefGoogle Scholar
  40. Said-Galiev, E. E., Vasil’kov, A. Y., Nikolaev, A. Y., Lisitsyn, A. I., Naumkin, A. V., Volkov, I. O., Abramchuk, S. S., Lependina, O. L., Khokhlov, A. R., Shtykova, E. V., Dembo, K. A., & Erkey, C. (2012). Structure of mono- and bimetallic heterogeneous catalysts based on noble metals obtained by means of fluid technology and metal-vapor synthesis. Russian Journal of Physical Chemistry A, 86, 1597–1603.CrossRefGoogle Scholar
  41. Sies, H. (1993). Damage to plasmid DNA by singlet oxygen and its protection. Mutation Research, 299, 183–191.CrossRefPubMedGoogle Scholar
  42. Soltani-Nejad, M., Shahidi Bonjar, G. H., Khatami, M., Amini, A., & Aghighi, S. (2016). In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET Nanobiotechnology.  https://doi.org/10.1049/iet-nbt.2015.0121.
  43. Soytong, K., Charoenporn, C., & Kanokmedhakul, S. (2013). Evaluation of microbial elicitors to induce plant immunity for tomato wilt. African Journal of Microbiology Research, 7, 1993–2000.Google Scholar
  44. Stoeva, S. I., Smetana, A. B., Sorensen, C. M., & Klabunde, K. J. (2007). Gram-scale synthesis of aqueous gold colloids stabilized by various ligands. Journal of Colloid and Interface Science, 309, 94–98.CrossRefPubMedGoogle Scholar
  45. Svergun, D. I. (1992). Determination of the regnlarization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography, 25, 95–503.CrossRefGoogle Scholar
  46. Tatsadjieu, L., Dongmo Jazet, P. M., Ngassoum, M. B., Etoa, F. X., & Mbofung, C. M. F. (2009). Investigations on the essential oil of Lippia rugosa from Cameroun for its potential use as antifungal agent against Aspergillus flavus Link ex Fries. Food Control, 20, 161–166.CrossRefGoogle Scholar
  47. Vahabi, K., Mansoori, G. A., & Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma reesei. Insciences Journal, 1, 65–79.CrossRefGoogle Scholar
  48. Vasil’kov, A. Y., Olenin, A. Y., Titova, E. F., & Sergeev, V. A. (1995). Peculiarities of cobalt nanometer scale particle nucleation on an alumina surface. Journal of Colloid and Interface Science, 169, 356–360.CrossRefGoogle Scholar
  49. Vasil’kov, A. Y., Naumkin, A. V., Volkov, I. O., Podshibikhin, V. L., Lisichkin, G. V., & Khokhlov, A. R. (2010). Antibacterial and antifungal effect of cotton bandaging material modified with gold nanoparticles. Surface and Interface Analysis, 42, 559–563.CrossRefGoogle Scholar
  50. Wöll, C. C. (2007). The chemistry and physics of zinc oxide surfaces. Progress in Surf Science, 82, 55–120.CrossRefGoogle Scholar
  51. Woodhall, J. W., Lees, A. K., Edwards, S. G., & Jenkinson, P. (2008). Infection of potato by Rhizoctonia solani: effect of anastomosis group. Plant Pathology, 57, 897–905.CrossRefGoogle Scholar
  52. Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mode of action of ZnO. Applied and Environmental Microbiology, 77, 2325–2331.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Xu, J., Zhao, X., Han, X., & Du, Y. (2007a). Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pesticide Biochemistry and Physiology, 87, 220–228.CrossRefGoogle Scholar
  54. Xu, J., Zhao, X., Wang, X., Zhao, Z., & Du, Y. (2007b). Oligochitosan inhibits Phytophtora capsici by penetrating the cell membrane and putative binding to intracellular target. Pesticide Biochemistry and Physiology, 88, 167–175.CrossRefGoogle Scholar
  55. Xue, J., Luo, Z., Li, P., Ding, Y., Cui, Y., & Wu, Q. (2014). A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Scientific Reports, 4, 5408.  https://doi.org/10.1038/srep05408.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yoon, M. Y., Cha, B., & Kim, J. C. (2013). Recent trends in studies on botanical fungicides in agriculture. Plant Pathology Journal, 29, 1–9.Google Scholar
  57. Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K., & Nasri, M. (2014). Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. International Journal of Food Microbiology, 185, 57–63.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Kamel A. Abd-Elsalam
    • 1
    • 2
  • Alexander Yu. Vasil’kov
    • 3
  • Ernest E. Said-Galiev
    • 3
  • Margarita S. Rubina
    • 3
  • Alexei R. Khokhlov
    • 3
  • Alexander V. Naumkin
    • 3
  • Eleonora V. Shtykova
    • 4
  • Mousa A. Alghuthaymi
    • 5
  1. 1.Plant Pathology Research Institute, Agricultural Research Center (ARC)GizaEgypt
  2. 2.Unit of Excellence in Nano-Molecular Plant Pathology Research Center – Plant Pathology Research InstituteGizaEgypt
  3. 3.A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)MoscowRussia
  4. 4.A.V. Shubnikov Institute of Crystallography of Russian Academy of Sciences (IC RAS)MoscowRussia
  5. 5.Biology DepartmentScience and Humanities College, Shaqra UniversityAlquwayiyahSaudi Arabia

Personalised recommendations