European Journal of Plant Pathology

, Volume 151, Issue 1, pp 1–20 | Cite as

Reduction of deoxynivalenol (DON) contamination by improved fungicide use in wheat. Part 2. Farm scale tests with different nozzle types and updating the integrated approach

  • Á. Mesterházy
  • M. Varga
  • B. Tóth
  • C. Kótai
  • T. Bartók
  • A. Véha
  • K. Ács
  • C. Vágvölgyi
  • S. Lehoczki-Krsjak
Article

Abstract

Fungicidal control of Fusarium head blight (FHB) of wheat with fungicides generally has poor efficacy (0–40%). However, small plot trials prove that a 70–90% reduction in toxin contamination is possible. We compared two variants of side-spraying nozzles with the Turbo FloodJet. The new nozzle combination (QJ 90, TT F, XR B) reduced visual FHB scores by 50% as compared to the standard TeeJet XR nozzles. The fungicide choice is decisive, the best product reduced DON by 81%, the least effective only by 31%. Greater genetic resistance is also decisive, the most resistant cultivar showed a 73% reduction in DON across all treatments. The combined effect of the fungicide + cultivar was 98.5% between the UTC and best fungicide/variety combination (GK Fény/PT) across three years. The new combined nozzle was more effective at the better fungicides containing prothioconazole, metconazole and tebuconazole, at the less effective fungicides its effect was only average. Correlations between small plot (Part 1) and farm tests were r = 0.96 (P = 0.001) for FHB, r = 0.91 (P = 0–001) for FDK, and r = 0.75 (P = 0.02) for DON indicating that small plot results forecast field usefulness and reduction in field control was close to the small plot results for all traits. The heart of integrated plant management (IPM) is the combination of variety resistance, the effective fungicide and the side-spraying technology with appropriate nozzle choice. Resistance governs fungicide reduction, nozzle influence, effect of previous crop and tillage. Susceptible cultivars should be withdrawn from production, but cultivars such as GK Fény treated with preventive fungicides at the flowering phase can be grown without any serious food safety risk. With a careful field-specific IPM combination, the reduction can be doubled without significant additional costs.

Keywords

Fusarium head blight Wheat Fungicide Cultivar resistance Nozzle type Fungicide receptivity Deoxynivalenol Integrated pest management 

Abbreviations

a.i.

Active ingredients

DON

Deoxynivalenol

F.c.

F. culmorum

FDK

Fusarium-damaged kernel

FHB

Fusarium head blight

F.g.

Fusarium graminearum

IPM

Integrated plant management. Fungicides – see Table 1

UTC

Not treated control

Notes

Acknowledgements

The research was conducted with the financial support of the MycoRed FP7 (KBBE-2007-2-5-05) and GOP-1.1.1-11-2012-0159 projects (supported by Hungarian and EU grants). The Authors are thankful to Dr. Mátyás Cserháti for the suggestions and help improving the English of the manuscript.

References

  1. Amarasinghe, C. C., Tamburic-Ilincic, L., Gilbert, J., Brûlé-Babel, A. L., & Dilantha-Fernando, W. G. (2013). Evaluation of different fungicides for control of Fusarium head blight in wheat inoculated with 3ADON and 15ADON chemotypes of Fusarium graminearum in Canada. Canadian Journal of Plant Pathology, 35, 200–208.CrossRefGoogle Scholar
  2. Anonymous (2008). 5.19 Prothioconazole (232). JMPR 2008 Report Dec 11. doc,. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report08/Prothioconazole.pdf.
  3. Anonymous (2016a). Folicur, Tebuconazole 250 EC (25.9% w/w). https://www.bayer.in/product_details.php?product_id=13. Last updated: Aug 20, 2016. Copyright © Bayer CropScience Limited.
  4. Anonymous (2016b). Metconazole. PPDB Pesticide properties DataBase, Version PPDB 3.0 Jan 2016 University of Hertfordshire, http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/451.htm, Site last updated: 11/8/2016, Email: aeru@herts.ac.uk.
  5. Becher, R., Hettwer, U., Karlovsky, P., Deising, H. B., & Wirsel, S. G. R. (2010). Adaptation of Fusarium graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin production. Phytopathology, 100, 444–453.CrossRefPubMedGoogle Scholar
  6. Bianchini, A., Horsley, R., Jack, M. M., Ryu, D., Wilson, W. W., Abbas, H. K., Abdel, S., Harrison, G., Miller, J. D., Shier, W. T., & Weaver, G. (2015). DON occurrence in grains: a north American perspective. Cereal Foods World, 60, 32–56.CrossRefGoogle Scholar
  7. Blandino, M., Minelli, L., & Reyneri, A. (2006). Strategies for the chemical control of Fusarium head blight: effect on yield, alveographic parameters and deoxynivalenol contamination in winter wheat grain. European Journal of Agronomy, 25, 193–201.CrossRefGoogle Scholar
  8. Blandino, M., Pilati, A., & Reyneri, A. (2009). Effect of foliar treatments to durum wheat on flag leaf senescence, grain yield, quality and deoxynivalenol contamination in North Italy. Field Crops Research, 114, 214–222.CrossRefGoogle Scholar
  9. Blandino, M., Haidukowski, M., Pascale, M., Plizzari, L., Scudellari, D., & Reyneri, A. (2012). Integrated strategies for the control of Fusarium head blight and deoxynivalenol contamination in winter wheat. Field Crops Research, 133, 139–149.CrossRefGoogle Scholar
  10. Buechley, G., & Shaner, G. (2003). Control of Fusarium head blight with fungicides in Indiana (pp. 61–64). In S. M. Canty, J. Lewis, R. W. Ward (Eds.), National Fusarium Head Blight Forum Proceedings, Bloomington.Google Scholar
  11. D'Angelo, D. L., Bradley, C. A., Ames, K. A., Willyerd, K. T., Madden, L. V., & Paul, P. A. (2014). Efficacy of fungicide applications during and after anthesis against Fusarium head blight and deoxynivalenol in soft red winter wheat. Plant Disease, 98, 1387–1397.CrossRefGoogle Scholar
  12. Dill-Macky, R., & Jones, R. K. (2000). The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Disease, 84, 71–76.CrossRefGoogle Scholar
  13. Duke, C.L., Protz, R., Gillespie, T., Schaafsma, A., Tamburic-Illincic, L., & Hudak, D. (2000). Relating Fusarium head blight in wheat to rainfall patterns using GIS and weather radar data in southern Ontario (pp. 311–318). Second International Conference on Geospatial Information in Agriculture and Forestry, 10–12 January 2000, Lake Buena Vista, Florida. Vol. 1.Google Scholar
  14. Gaurilčikienė, I., Butkutė, B., Mankevičienė, A., & Paplauskienė, V.A. (2010). Multiaspect comparative investigation on the use of strobilurin and triazole-based fungicides for winter wheat disease control fungicides (pp. 69–94). Odile Carisse (Ed.), ISBN: 978–953–307-266-1, InTechopen.com.
  15. Halley S.; Van Ee, G., Hofman, V., McMullen, M., Hollingsworth, C., & Ruden, B. (2008). Ground application of fungicide for the suppression of Fusarium head blight in small grains, AE1314 (Revised), NDSU, Fargo N. D. http://www.ag.ndsu.edu/pubs/ageng/machine/ae1314.pdf.
  16. Hooker, D.C.; & Schaafsma, A.F. (2004). Effective application of fungicides on wheat heads: What’s the best? p. 330, Abstract. In S. M.Canty, T. Bring, T. Versdahl, J. Wardwell, R. W. Ward (Eds.), Proceedings of the 2nd International Symposium on Fusarium Head Blight Incorporating the 8th European Fusarium Seminar Volume 1, Orlando, 11–15 December.Google Scholar
  17. Karplus, N. H. (2010). Control of Fusarium head blight in wheat: i. Evaluation of host plant resistance and fungicides ii. Molecular markers associated with QTL for resistance. MS Thesis, University of Illinois at Urbana-Champaign, Ill. 88 pp.Google Scholar
  18. Koch, H. J., Pringas, C., & Maerlaender, B. (2006). Evaluation of environmental and management effects on Fusarium head blight infection and deoxynivalenol concentration in the grain of winter wheat. European Journal of Agronomy, 24, 357–366.CrossRefGoogle Scholar
  19. Lehoczki-Krsjak, S., Szabó-Hevér, Á., Tóth, B., Kótai, C., Bartók, T., Varga, M., Farády, L., & Mesterházy, Á. (2010). Prevention of Fusarium mycotoxin contamination by breeding and fungicide application in wheat. Food Additives & Contaminants, Part A, 27, 616–628.CrossRefGoogle Scholar
  20. Lehoczki-Krsjak, S., Varga, M., Szabó-Hevér, Á., & Mesterházy, Á. (2013). Translocation and degradation of tebuconazole and prothioconazole in wheat in the most Fusarium-susceptible phenophase. Pest Management Science, 69, 1216–1224.PubMedGoogle Scholar
  21. Lehoczki-Krsjak, S., Varga, M., & Mesterházy, A. (2015). Distribution of prothioconazole and tebuconazole between wheat ears and flag leaves following fungicide spraying with different nozzle types at flowering. Pest Management Science, 71, 105–113.CrossRefPubMedGoogle Scholar
  22. Lipps, P., Johnston, A., & Madden, L. (2003). Results of the uniform Fusarium head blight fungicide test on winter wheat in Ohio, (pp. 92–93) In: S. M. Canty, J. Lewis, R. W. Ward (Eds.). National Fusarium Head Blight Forum Proceedings, Bloomington.Google Scholar
  23. McMullen, M., Halley, S., Schatz, B., Meyer, S., Jordahl, J., & Ransom, J. (2008). Integrated strategies for Fusarium head blight management in the United States. Cereal Research Communications, 36(Suppl. B), 563–568.Google Scholar
  24. McMullen, M., De Wolf, E., Dill-Macky, R., Hershman, D., Shaner, G., & van Sanford, D. (2012). A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Disease, 96, 1712–1728.CrossRefGoogle Scholar
  25. Mesterházy, Á., Bartók, T., 1996. Control of Fusarium head blight of wheat by fungicide and its effect in the toxin contamination of the grains. Pflanzenschutz Nachrichten Bayer 49:187–205.Google Scholar
  26. Mesterházy, Á. (1995). Types and components of resistance against Fusarium head blight of wheat. Plant Breeding, 114, 377–386.CrossRefGoogle Scholar
  27. Mesterházy Á., Bartók, T., Lamper, Cs. (2003). Influence of cultivar resistance, epidemic severity, and Fusarium species on the efficacy of fungicide control of Fusarium head blight in wheat and deoxynivalenol (DON) contamination of grain. Plant Disease, 87, 1107–1115.Google Scholar
  28. Mesterházy, Á., Tóth, B., Varga, M., Bartók, T., Szabó-Hevér, Á., Farády, L., & Lehoczki-Krsjak, S. (2011). Role of fungicides, of nozzle types, and the resistance level of wheat varieties in the control of Fusarium head blight and deoxynivalenol. Toxins, 3, 1453–1483.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Mesterházy Á., Varga M., Tóth B., Kótai Cs., Bartók T., Véha, A., Ács, K., Vágvölgyi C. & Lehoczki-Krsjak S. (2017). Reduction of deoxynivalenol (DON) contamination by improved fungicide use in wheat. Part 1. Dependence on epidemic severity and resistance level in small plot tests at artificial inoculation. European Journal of Plant Pathology, submitted.Google Scholar
  30. Musyimi, S. H., Muthomi, J. W., Narla, R. D., & Wagacha, J. M. (2012). Efficacy of biological control and cultivar resistance on Fusarium head blight and T-2 toxin contamination in wheat. American Journal of Plant Sciences, 3, 599–607.CrossRefGoogle Scholar
  31. Nakajima, T. (2010). Fungicides application against Fusarium head blight in wheat and barley for ensuring food safety. In: O. Carisse (Ed.), Fungicides. Published by InTech, Janeza Trdine 9, 51000 Rijeka, Croatia, http://www.intechopen.com.
  32. Nakajima, T., Yoshida, M., & Tomimura, K. (2008). Effect of lodging on the level of mycotoxins in wheat, barley, and rice infected with the Fusarium graminearum species complex. Journal of General Plant Pathology, 74, 289–295.CrossRefGoogle Scholar
  33. Oldenburg, E., Brunotte, J., & Weinert, J. (2007). Strategies to reduce DON contamination of wheat with different soil tillage and variety systems. Mycotoxin Research, 23, 73–77.CrossRefPubMedGoogle Scholar
  34. Olivet, J.J., Villlalba, J., Volpi, J., & Cunha, J.P. (2012). Evaluation of spray nozzles for control of Fusarium head blight in wheat crops (pp. P-1621). In Power and Machinery. International Conference of Agricultural Engineering-CIGR-AgEng: Agriculture and engineering for a healthier life, Valencia, Spain, 8-12 July 2012. URL http://cigr.ageng2012.org/images/fotosg/tabla_137.
  35. Pancaldi, D., Pisi, A., Alberti, I., & Romani, S. (2004). Control of Fusarium head blight and accumulation of deoxynivalenol in durum wheat grain, semolina and bran. Phytopathologia Mediterranea, 43, 351–359.Google Scholar
  36. Panisson, E., Boller, W. E., Reis, M., & Hoffmann, L. (2003). Fungicidal spray techniques for the control of head blight (Gibberella zeae) in wheat. Ciência Rural Santa Maria, 33, 13–20.CrossRefGoogle Scholar
  37. Paul, P. A., Lipps, P. E., & Madden, L. V. (2006). Meta-analysis of regression coefficients for the relationship between Fusarium head blight and deoxynivalenol content of wheat. Phytopathology, 96, 951–961.CrossRefPubMedGoogle Scholar
  38. Paul, P. A., Lipps, P. E., Hershman, D. E., McMullen, M. P., Draper, M. A., & Madden, L. V. (2007). A quantitative review of tebuconazole effect on Fusarium head blight and deoxynivalenol content in wheat. Phytopathology, 97, 211–220.CrossRefPubMedGoogle Scholar
  39. Paul, P. A., Lipps, P. E., Hershman, D. E., McMullen, M. P., Draper, M. A., & Madden, L. V. (2008). Efficacy of triazole-based fungicides for Fusarium head blight and deoxynivalenol control in wheat: a multivariate meta-analysis. Phytopathology, 98, 999–1011.CrossRefPubMedGoogle Scholar
  40. Paul, P. A., Hershman, D. E., McMullen, M. A., & Madden, L. V. (2010). Effects of triazole-based fungicides on wheat yields and test weights as influenced by Fusarium head blight intensity. Phytopathology, 100, 160–171.CrossRefPubMedGoogle Scholar
  41. Pirgozliev, S. T., Edwards, S. G., Hare, M. C., & Jenkinson, P. (2003). Strategies for the control of Fusarium head blight in cereals. European Journal of Plant Pathology, 109, 731–742.CrossRefGoogle Scholar
  42. Reed, E. (2011). Integrated pest management of Fusarium head blight in soft red winter wheat. MS thesis, Univ. Maryland College Park, 68 pp.Google Scholar
  43. Semaskiene, R, Mankeviciene, A., Dabkevicius, Z., Suproniene, S. (2006). Effect of fungicides on Fusarium infection and production of deoxynivelenos is spring cereals. Agronomy Researc 4 (Special Issue): 363–366).Google Scholar
  44. Šíp, V., Chrpová, J., Leisova, L., Sykorova, S., Kucera, L., & Ovesna, J. (2007). Effects of genotype, environment and fungicide treatment on development of Fusarium head blight and accumulation of DON in winter wheat grain. 2007. Czech Journal of Genetics and Plant Breeding, 43, 16–31.Google Scholar
  45. Šíp, V., Chrpová, J., Veškrna, O., & Bobková, L. (2010). The impact of cultivar resistance and fungicide treatment on mycotoxin content in grain and yield losses caused by Fusarium head blight in wheat. Czech Journal of Genetics and Plant Breeding, 46, 21–26.Google Scholar
  46. Skinnes, H., Tarkegne, Y., Dieseth, J. A., & Bjørnstad, Å. (2008). Associations between anther extrusion and Fusarium head blight in European wheat. Cereal Research Communications, 36(Supplement 6), 223–231.CrossRefGoogle Scholar
  47. Spolti, P., Guerra, D. S., Badiale-Furlong, E., & Del Ponte, E. M. (2013). Single and sequential applications of metconazole alone or in mixture with pyraclostrobin to improve Fusarium head blight control and wheat yield in Brazil. Tropical Plant Pathology, 38, 85–96.CrossRefGoogle Scholar
  48. Sres, A., Trdan, S., Leskosek, G., Vidrih, M., & Vucajnk, F. (2015). Effect of spraying speed on head coverage of winter wheat with fungicide, occurrence of Fusarium head blight and deoxynivalenol, yield and grain quality. Cereal Research Communications, 43, 72–83.CrossRefGoogle Scholar
  49. Strange, R. N., Majer, J. R., & Smith, H. (1974). Isolation and Identification of choline and betaine as 2 major components in anthers and wheat-germ that stimulate Fusarium-graminearum in vitro. Physiological Plant Pathology, 4, 277–290.CrossRefGoogle Scholar
  50. Sváb, J. (1981) Biometriai Módszerek a Kutatásban (Methods for biometrics in research), 3rd ed.; Mezőgazdasági Kiadó (Agr. Publ. House): Budapest, Hungary, pp. 557. ISBN 963 231 0136.Google Scholar
  51. Szabó-Hevér, Á., Lehoczki-Krsjak, S., Varga, M., Purnhauser, L., Pauk, J., Lantos, C., & Mesterházy, A. (2014). Differential influence of QTL linked to Fusarium head blight, Fusarium-damaged kernel, deoxynivalenol contents and associated morphological traits in a Frontana-derived wheat population. Euphytica, 200, 9–26.CrossRefGoogle Scholar
  52. Weber, E. (1967). Grundriss der Biologischen Statistik; (Fundaments of the Biological Statistics) VEB Fisher Verlag: Jena, Germany: GDR.Google Scholar
  53. Wegulo, S. N., Baenziger, P. S., Nopsa, J. H., Bockus, W. W., & Hallen-Adams, H. (2015). Management of Fusarium head blight of wheat and barley. Crop Protection, 73, 100–107.CrossRefGoogle Scholar
  54. Wilcoxson, R. D. (1996). Fungicides for control of Fusarium head blight - a review. 1996. Paper No. 22507 of the Minnesota Agr. Exp. Stn, St. Paul. University of Minnesota.Google Scholar
  55. Zadoks J.C., Chang T.T., & Konzak C.F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421. Wageningen Academic Publisher.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Á. Mesterházy
    • 1
  • M. Varga
    • 1
    • 4
  • B. Tóth
    • 1
    • 4
  • C. Kótai
    • 1
  • T. Bartók
    • 2
  • A. Véha
    • 2
  • K. Ács
    • 1
  • C. Vágvölgyi
    • 3
  • S. Lehoczki-Krsjak
    • 1
  1. 1.Cereal Research Non-profit Ltd.SzegedHungary
  2. 2.Faculty of EngineeringUniversity of SzegedSzegedHungary
  3. 3.Department of MicrobiologySzeged UniversitySzegedHungary
  4. 4.National Agricultural Innovation Center, Department of Field Crops ResearchSzegedHungary

Personalised recommendations