Advertisement

European Journal of Plant Pathology

, Volume 150, Issue 4, pp 955–969 | Cite as

Occurrence of Puccinia spp. spores in Madeira Island and their phytopathological importance

  • Irene CamachoEmail author
  • Rubina Leça
  • Duarte Sardinha
  • Roberto Camacho
  • Magdalena Sadyś
Article
  • 234 Downloads

Abstract

The genus Puccinia represents rust infections, which are responsible for great productivity losses in crops of commercial and ornamental plants worldwide. This work is aimed at determining the occurrence of Puccinia spp. spores in Madeira Island in order to infer the exposure risks from a phytopathological point of view. A phytopathological analysis was performed in 203 local plant samples between January 2003 and December 2012. During the same period the airborne concentrations of rust spores were monitored following well-established guidelines. Aerobiological data was compared with meteorological records. Based on macro and microscopic analyses, five species of rusts were identified: P. horiana, P. buxi, P. porri, P. pelargonii-zonalis, and P. sorghi, and they were found mostly in spring and summer. A total of 20 samples out of 203 analysed plants (9.8%), were infected with Puccinia spores, i.e., P. horiana (5.9%), P. buxi (1.47%), P. porri and P. pelargonii-zonalis (0.98%), and P. sorghi (0.5%). During the studied period Puccinia spores attained an annual average concentration of 126 spores m−3 and most of them were recorded between March and October. Meteorological factors were determinant in fluctuations in spore concentration. Relative humidity was the parameter that favoured the biggest release and dispersal of the rust spores, whereas rainfall revealed a significant negative effect. Rusts do not represent an important plant pathogen in Madeira Island, as shown by the low infection frequencies and levels of airborne spore concentrations.

Keywords

Rust Inoculum detection Infection conditions Aerobiology Portugal 

Notes

Acknowledgements

The authors are grateful to the Portuguese Society of Allergology and Clinical Immunology (SPAIC) for the help and support in the aerobiological study and the Institute of Ocean and Atmosphere (IPMA) - Regional Station in Funchal for providing the meteorological data. Special thanks go to the Center for Invasive Species and Ecosystem Health, USA, for providing selected images of rust species.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agrios, G. N. (1997). Plant pathology. San Diego: Academic press.Google Scholar
  2. Babadoost, M. (1991). Common rust and southern rust of sweet corn. Report on plant disease. University of Illinois Extension, RPD, (Serial No. 965).Google Scholar
  3. Bonde, M. R., Palmer, C. L., Luster, D. G., Nester, S. E., Revell, J. M., & Berner, D. K. (2014). Viability of Puccinia horiana teliospores under various environmental conditions. Plant Health Progress, 15, 25–28.  https://doi.org/10.1094/PHP-RS-13-0117.Google Scholar
  4. Borges, P. A. V., Abreu, C., Aguiar, A. M. F., Carvalho, P., Jardim, R., Melo, I., et al. (2008). A list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos. Direcção Regional do Ambiente da Madeira and Universidade dos Açores, Funchal and Angra do Heroísmo.Google Scholar
  5. Calderon, C., Lacey, J., McCartney, H. A., & Rosas, I. (1995). Seasonal and diurnal variation of airborne basidiomycete spore concentrations in Mexico City. Grana, 34, 260–268.CrossRefGoogle Scholar
  6. Calheta (Madeira) (2017). https://www.infopedia.pt/$calheta-(madeira). Accessed 5 Jan 2017.
  7. D’Amato, G., & Spieksma, F. Th. M. (1995). Aerobiologic and clinical aspects of mould allergy in Europe. European Academy of Allergology and Clinical Immunology Position Paper. Allergy, 50, 870–877.Google Scholar
  8. De Backer, M., Alaei, H., Van Bockstaele, E., Roldan-Ruiz, I., van der Lee, T., Maes, M., et al. (2011). Identification and characterization of pathotypes in Puccinia horiana, a rust pathogen of Chrysanthemum x morifolium. European Journal of Plant Pathology, 130, 325–338.CrossRefGoogle Scholar
  9. De Wolf, E., Murray, T., Paul, P., Osborne, L., & Tenuta, A. (2011). Identification and Management of Stem Rust on Wheat and Barley. USDA-CREES Extension IPM 2009-41533-05331. http://plantpath.wsu.edu/wp-content/uploads/2012/10/Stem-Rust-Man-WA1.pdf. Accessed 15 Nov 2016.
  10. Dennis, R. W. G. (1986). Fungi of the Hebrides. Kew: Royal Botanic Garden.Google Scholar
  11. Dunhin, B. J., Pretorius, Z. A., Bender, C. M., Kloppers, F. J., & Flett, B. C. (2004). Description of spore stages of Puccinia sorghi in South Africa, south African. Journal of Plant Soil, 21, 48–52.CrossRefGoogle Scholar
  12. Elvira-Rendueles, B., Moreno, J., Garcia-Sanchez, A., Vergara, N., Martinez-Garcia, M. J., & Moreno-Grau, S. (2013). Air-spore in Cartagena, Spain: Viable and non-viable sampling methods. Annals of Agricultural and Environmental Medicine, 20, 664–671.PubMedGoogle Scholar
  13. EPPO/CABI. (1997). Puccinia horiana. In I. M. Smith, D. G. McNamara, P. R. Scott, & M. Holderness (Eds.), Quarantine pests for Europe. Wallingford: CABI.Google Scholar
  14. Farr, D. F., Bills, G. F., Chamuris, G. P., & Rossman, A. Y. (1989). Fungi on plants and plant products in the United States. St. Paul: American Phytopathological Society Press.Google Scholar
  15. Fried, G., Chauvel, B., Reynaud, P., & Sache, I. (2017). Decreases in crop production by non-native weeds, pests, and pathogens. In M. Vilá & P. E. Hulme (Eds.), Impact of biological invasions on ecosystem services (pp. 83–102). Switzerland: Springer International Publishing.CrossRefGoogle Scholar
  16. Gage, S. H., Isard, S. A., & Colunga-Garcia, M. (1999). Ecological scaling of aerobiological dispersal processes. Agricultural and Forest Meteorology, 97, 249–261.CrossRefGoogle Scholar
  17. Galán, C., Cariñanos, P., Alcázar, P., & Dominguez-Vilches, E. (2007). Spanish aerobiology network (REA) management and quality manual. Córdoba: Servicio de Publicaciones Universidad de Córdoba, Argos Impresores SL.Google Scholar
  18. Galán, C., Smith, M., Thibaudon, M., Frenguelli, G., Oteros, J., Gehrig, R., et al. (2014). Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia, 30, 385–395.CrossRefGoogle Scholar
  19. Geagea, L., Hubera, L., & Sache, I. (1999). Dry-dispersal and rain-splash of brown (Puccinia recondite f.sp. tritici) and yellow (P. striiformis) rust spores from infected wheat leaves exposed to simulated raindrops. Plant Pathology, 48, 472–482.CrossRefGoogle Scholar
  20. Ghatge, M. M., Salunkhe, V. S., & Jadhav, R. R. (2013). Diversity of airborne fungi in Kadegaon Tahsil, district Sangli, MS, India. International Research Journal of Environmental Sciences, 2, 26–29.Google Scholar
  21. Gjaerum, H. B. (1982). Rust fungi from Madeira. Boletim do Museu Municipal do Funchal, 34, 1–22.Google Scholar
  22. Glen, M., Alfenas, A. C., Zauza, E. A. V., Wingfield, M. J., & Mohammed, C. (2007). Puccinia psidii: A threat to the Australian environment and economy–a review. Australasian Plant Pathology, 36, 1–16.CrossRefGoogle Scholar
  23. Göre, M. E. (2008). Geranium rust disease caused by Puccinia pelargonii-zonalis: First report in Turkey. Plant Pathology, 57, 786.Google Scholar
  24. Goudie, A. S., & Middleton, N. J. (2001). Saharan dust storms: Nature and consequences. Earth-Science Reviews, 56, 179–204.CrossRefGoogle Scholar
  25. Gregorio-Cipriano, M. R., Fernández-Pavía, S. P., Rodríguez-Alvarado, G., & Gómez-Dorantes, N. (2013). First report of geranium rust (Puccinia pelargonii-zonalis) in the state of Michoacán, México. Plant Disease, 97(12), 1660 http://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-05-13-0570-PDN. Accessed 14 Nov 2016.CrossRefGoogle Scholar
  26. Guarín, F. A., Abril, M. A. Q., Alvarez, A., & Fonnegra, R. (2015). Atmospheric pollen and spore content in the urban area of the city of Medellin, Colombia. Hoehnea, 42, 9–19.CrossRefGoogle Scholar
  27. Harrison, J. M. (1987). Observations on the occurrence of telia of Puccinia porri on leeks in the UK. Plant Pathology, 36, 114–115.CrossRefGoogle Scholar
  28. Hermansen, J. E., Torp, U., & Prahm, L. P. (1978). Studies of transport of live spores of cereal mildew and rust fungi across the North Sea. Grana, 17, 41–46.CrossRefGoogle Scholar
  29. Herut, B., Collier, R., & Krom, M. D. (2002). The role of dust in supplying nitrogen and phosphorus to the Southeast Mediterranean. Limnology and Oceanography, 47(3), 870–878.CrossRefGoogle Scholar
  30. Hiratsuka, Y., & Sato, S. (1982). Morphology and taxonomy of rust fungi. In K. Scott & A. K. Chakravorty (Eds.), The rust fungi (pp. 1–36). New York: Academic press.Google Scholar
  31. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  32. Ho, T. M., Tan, B. H., Ismail, S., & Bujang, M. K. (1995). Seasonal prevalence of air-borne pollen and spores in Kuala Lumpur, Malaysia. Asian Pacific Journal of Allergy and Immunology, 13, 17–22.PubMedGoogle Scholar
  33. Holl, F. (1830). Verzeichniss der auf der Insel Madeira beobachteten Pflazen, nebst Beschreibung einiger neuen Arten. Flora, 13, 369–392.Google Scholar
  34. Huerta-Espino, J., Singh, R. P., & Roelfs, A. P. (2014). Rust fungi of wheat. In J. K. Misra, J. P. Tewari, S. K. Deshmukh, & C. Vágvölgyi (Eds.), Fungi from different substrates (pp. 217–259). Boca Raton: CRC press.Google Scholar
  35. Hutchidon, L. J. (1996). Puccinia pelargonii-zonalis (Uredinales: Pucciniaceae), an addition to the rust flora of Canada. Mycoscience, 37, 467–469.CrossRefGoogle Scholar
  36. Isard, S. A., & Russo, J. M. (2011). Risk assessment of aerial transport of rust pathogens to the western hemisphere and within North America. In McIntosh, R. (Ed.) Proc BGRI 2011Technical Workshop (pp. 25–34). St. Paul. http://www.globalrust.org/sites/default/files/2011%20BGRI%20plenary%20presentations-ALL.pdf. Accessed 18 May 2017.
  37. Isard, S. A., Gage, S. H., Comtois, P., & Russo, J. M. (2005). Principles of the atmospheric pathway for invasive species applied to soybean rust. Bioscience, 55, 851–861.CrossRefGoogle Scholar
  38. Jędryczka, M., Brachaczek, A., Kaczmarek, J., Dawidziuk, A., Kasprzyk, J., Mączyńska, A., et al. (2012). System for forecasting disease epidemics (SPEC) – Decision support system in polish agriculture, based on aerobiology. Alergologia Immunologia, 9, 89–91.Google Scholar
  39. Kadam, R. M., Reddy, N. J. M., & Biradar, R. P. (2010). Air-borne spore population of Puccinia penniseti in relation to rust disease of bajra at Ahmedpur. International Journal of Plant Protection, 3, 160–162.Google Scholar
  40. Kolmer, J. A. (2001). Early research on the genetics of Puccinia Graminis and stem rust resistance in wheat in Canada and the United States. In P. D. Peterson (Ed.), Stem rust of wheat: From ancient enemy to modern foe (pp. 51–82). St Paul: APS press.Google Scholar
  41. Levetin, E., & Horner, W. E. (2002). Fungal aerobiology: Exposure and measurement. Chemical Immunology, 81, 10–27.CrossRefPubMedGoogle Scholar
  42. Luck, J., Spackman, M., Freeman, A., Trebicki, P., Griffiths, W., Finlay, K., et al. (2011). Climate change and diseases of food crops. Plant Pathology, 60, 113–121.CrossRefGoogle Scholar
  43. Ma, L., Hu, X., & Xu, X. (2017). Effect of controlled fluctuating low temperatures on survival of Puccinia striiformis f. sp. Tritici. European Journal of Plant Pathology, 147, 713–716.CrossRefGoogle Scholar
  44. Magyar, D., & Manninger, K. (2004). Effects of meteorological conditions on uredo- and teliospores of rusts. In Proceedings of the International Cereal Rusts and Powdery Mildews Conference. Norwich: John Innes Centre, 22-27 August 2004.Google Scholar
  45. Mallaiah, K. V., & Rao, A. S. (1982). Aerial dissemination of urediniospores of groundnut rust. Transactions of the British Mycological Society, 78, 21–28.CrossRefGoogle Scholar
  46. Marasas, C. N., Smale, M., & Singh, R. P. (2004). The economic impact in developing countries of leaf rust resistance breeding in CIMMYT-related spring bread wheat. Economics program paper 04–01. Mexico: D. F, CIMMYT.Google Scholar
  47. Morin, L., Aveyard, R., Lidbetter, J. R., & Wilson, P. G. (2012). Investigating the host-range of the rust fungus Puccinia psidii sensu lato across tribes of the family Myrtaceae present in Australia. PloS One, 7, e35434.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Morris, C. E., Sands, D. C., Glaux, C., Samsatly, J., Asaad, S., Moukahel, A. R., et al. (2013). Urediospores of rust fungi are ice nucleation active at >−10 °C and harbor ice nucleation active bacteria. Atmospheric Chemistry and Physics, 13, 4223–4233.Google Scholar
  49. Nagarajan, S., & Singh, D. V. (1990). Long-distance dispersion of rust pathogens. Annual Review of Phytopathology, 28, 139–153.CrossRefPubMedGoogle Scholar
  50. Pegg, G. S., Giblin, F. R., McTaggart, A. R., Guymer, G. P., Taylor, H., Ireland, K. B., et al. (2014). Puccinia psidii in Queensland, Australia: Disease symptoms, distribution and impact. Plant Pathology, 63, 1005–1021.CrossRefGoogle Scholar
  51. Peixoto-Junior, R. F., Creste, S., Landell, M. G. A., Nunes, D. S., Sanguino, A., Campos, M. F., et al. (2014). Genetic diversity among Puccinia Melanocephala isolates from Brazil assessed using simple sequence repeat markers. Genetics and Molecular Research, 13, 7852–7863.CrossRefPubMedGoogle Scholar
  52. Preece, T. F. (2000). The strange story of the box rust, Puccinia buxi, in Britain. Mycologist, 14(part 3), 104–106.CrossRefGoogle Scholar
  53. Pria, M. D., Zagonel, J., & Fernandes, E. C. (2008). Controle de ferrugem na cultura do alho com uma nova mistura de fungicidas. Horticultura Brasileira, 26, 268–270.CrossRefGoogle Scholar
  54. Purdy, L. H., Krupa, S. V., & Dean, J. L. (1985). Introduction of sugarcane rust into the Americas and its spread to Florida. Plant Disease, 69, 689–693.CrossRefGoogle Scholar
  55. Quintal, R. (2007). Quintas, Parques e Jardins do Funchal - Estudo fitogeográfico. Lisboa: Esfera do Caos Editores.Google Scholar
  56. RHS. (2016). Box problems, Diseases of box. https://www.rhs.org.uk/advice/profile?PID=851. Accessed 2 Nov 2016.
  57. Rivas-Martínez, S. (2001). Bioclimatic map of Europe – Thermotypes. Léon: University of Léon, Cartographic Service.Google Scholar
  58. Rivera-Mariani, F. E., & Bolanños-Rosero, B. (2012). Allergenicity of airborne basidiospores and ascospores: Need for further studies. Aerobiologia, 28, 83–97.CrossRefGoogle Scholar
  59. Roelfs, A. P. (1985). Epidemiology in North America. In A. P. Roelfs & W. R. Bushnell (Eds.), The cereal rusts, diseases, distribution epidemiology and control (pp. 403–434). Orlando: Academic Press.CrossRefGoogle Scholar
  60. Russi, L., Romani, M., & Pecetti, L. (2009). Susceptibility to rust (Puccinia sp.) in cultivars of Italian and perennial ryegrass grown in two locations of Italy. Italian Journal of Agronomy, 1, 69–77.CrossRefGoogle Scholar
  61. Sadyś, M., Adams-Groom, B., Herbert, R. J., & Kennedy, R. (2016). Comparisons of fungal spore distributions using air sampling at Worcester, England (2006–2010). Aerobiologia.  https://doi.org/10.1007/s10453-016-9436-4.
  62. Sansford, C., Beal, E. J., Denton, G., & Denton, J. O. (2015). First report of the rust Puccinia porri on cultivated Allium vineale ‘Hair’. New Disease Reports, 31, 4.  https://doi.org/10.5197/j.2044-0588.2015.031.004.CrossRefGoogle Scholar
  63. Scocco, E. A., Walcott, R. R., Jeffers, S. N., & Buck, J. W. (2013). Detection of Puccinia pelargonii-zonalis-infected geranium tissues and Urediniospores. Journal of Phytopathology, 161, 341–347.CrossRefGoogle Scholar
  64. Silva, E., Carvalho, R., Nunes, N., Ramos, A. P., & Talhinhas, P. (2016). First report of Puccinia hemerocallidis causing daylily rust in Europe. Plant Disease, 100, 2163.  https://doi.org/10.1094/PDIS-02-16-0242-PDN.CrossRefGoogle Scholar
  65. Smith, R. S. (1966). The liberation of cereal stem rust uredospores under various environmental conditions in a wind tunnel. Transactions of the British Mycological Society, 49, 33–41.CrossRefGoogle Scholar
  66. Talhinhas, P., Silva, E., Nunes, N., & Ramos, A. P. (2016). First report of Puccinia thaliae causing rust on canna spp. in Europe. Plant Disease, 100(6), 1242.  https://doi.org/10.1094/PDIS-12-15-1404-PDN.CrossRefGoogle Scholar
  67. Tessmanna, D. J., Dianeseb, J. C., Miranda, A. C., & Castro, L. H. R. (2001). Epidemiology of a Neotropical rust (Puccinia psidii): Periodical analysis of the temporal progress in a perennial host (Syzygium Jambos). Plant Patholology, 50, 725–731.CrossRefGoogle Scholar
  68. Trejo, F. H., Rodríguez, A. F. M., Molina, F. T., & Palacios, I. S. (2013). Airborne spores of basidiomycetes in Mérida (SW Spain). Annals of Agriculture Environment Medicine, 20, 657–663.Google Scholar
  69. Vodonos, A., Friger, M., Katra, I., Avnon, L., Krasnov, H., Koutrakis, P., et al. (2014). The impact of desert dust exposures on hospitalizations due to exacerbation of chronic obstructive pulmonary disease. Air Quality, Atmosphere and Health.  https://doi.org/10.1007/s11869-014-0253-z.
  70. Zadoks, J. C. (1967). International dispersal of fungi. Netherlands Journal of Plant Pathology, Supp. 1, 61–80.Google Scholar
  71. Zanatta, P. (2013). Controle preventivo de doenças foliares em híbridos comerciais de milho com fungicidas em espaçamento reduzido. Master's thesis, Brazil: Universidade Estadual do Centro-Oeste, Unicentro.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Irene Camacho
    • 1
    Email author
  • Rubina Leça
    • 2
  • Duarte Sardinha
    • 2
  • Roberto Camacho
    • 1
  • Magdalena Sadyś
    • 3
  1. 1.Faculty of Life SciencesMadeira University, Campus Universitário da PenteadaFunchalPortugal
  2. 2.Laboratório de Qualidade Agrícola da CamachaCamachaPortugal
  3. 3.Rothamsted ResearchHarpendenUK

Personalised recommendations