European Journal of Plant Pathology

, Volume 150, Issue 3, pp 785–789 | Cite as

Molecular identification of Tomato spotted wilt virus on pepper and tobacco in Republic of Srpska (Bosnia and Herzegovina)

  • Duška DelićEmail author
  • Bachir Balech
  • Mariana Radulović
  • Zorica Đurić
  • Biljana Lolić
  • Monica Santamaria
  • Gordana Đurić


Surveys for TSWV presence and distribution on vegetable, ornamental and tobacco plants were conducted during 2016 in open fields and greenhouses in different locations in Republic of Srpska, district of Bosnia and Herzegovina. One hundred and twelve samples were taken and preliminarily tested for TSWV presence with DAS-ELISA. Positive samples were double-checked in RT-PCR assays using specific primer sets and subsequently partial sequences of RdRp and N region genes were characterized. Serological and molecular results revealed twenty-seven TSWV positive samples (two peppers and twenty-five tobacco plants). Moreover, phylogenetic analyses showed that these isolates share the same gene pool and a similar evolutionary pattern mainly with other isolates present in Europe and Russia.


TSWV Capsicum annuum Nicotiana tabacum DAS ELISA PCR Sequencing Phylogeny 



This work was supported by the Ministry of Agriculture, Forestry and Water management of Republic of Srpska (contract number 10/3526/16).

Compliance with ethical standards

Hereby we confirm and declare that in the work done and present in this paper there is no any potential conflict of interest, also in the research any human and/or animals participant wasn’t used and there is no any disagreement with informed consent.

Supplementary material

10658_2017_1313_MOESM1_ESM.doc (4.3 mb)
Fig. S1 (DOC 4420 kb)
10658_2017_1313_MOESM2_ESM.doc (5.7 mb)
Fig. S2 (DOC 5857 kb)


  1. Adkins, S. (2000). Tomato spotted wilt virus-positive steps towards negative success. Molecular Plant Pathology, 1, 151–157.CrossRefPubMedGoogle Scholar
  2. Balech, B., Vicario, S., Donvito, G., Monaco, A., Notarangelo, P., & Pesole, G. (2015). MSA-PAD: DNA multiple sequence alignment framework based on PFAM accessed domain information. Bioinformatics, 31(15), 2571–2573.CrossRefPubMedGoogle Scholar
  3. Chatzivassiliou, E. K., Efthimiou, K., Drossos, E., Papadopoulou, A., Poimenidis, G., & Katis, N. I. (2004). A survey of tobacco viruses in tobacco crops and native flora in Greece. European Journal of Plant Pathology, 110, 1011–1023.CrossRefGoogle Scholar
  4. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Đurić, Z, Lolić, B, Delić D (2017). Morphological and molecular identification of Frankliniella occidentalis (Pergande) in republic of Srpska (p. 72). Banja Luka: 6th international symposium on agricultural sciences, February 27 – March 2, 2017.Google Scholar
  6. EFSA Panel on Plant Health (PLH). (2012). Scientific opinion on the pest categorization of the tospoviruses. EFSA Journal, 10, 3029.CrossRefGoogle Scholar
  7. Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8, 186–194.CrossRefPubMedGoogle Scholar
  8. Ewing, B., Hillier, L., Wendl, M. C., & Green, P. (1998). Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research, 8(3), 175–185.CrossRefPubMedGoogle Scholar
  9. Feng, Z., Chen, X., Bao, Y., Dong, J., Zhang, Z., & Tao, X. (2013). Nucleocapsid of Tomato spotted wilt tospovirusforms mobile particles that traffic on an actin/endoplasmic reticulum network driven by myosin XI-K. New Phytologist, 200, 1212–1224.CrossRefPubMedGoogle Scholar
  10. Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321.CrossRefPubMedGoogle Scholar
  11. de Haan, P., Kormelink, R., Oliveira, R., Poelwijk, F., & Peters, D. (1991). Tomatospotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology, 72, 2207–2216.CrossRefPubMedGoogle Scholar
  12. Hristova, D., Karadjova, O., Yankulova, M., Heinze, C., & Adam, G. (2001). A survey of tospoviruses in Bulgaria. Journal of Phytopathology, 149, 745–749.CrossRefGoogle Scholar
  13. Kajić, V. and Milanović J. (2013). Virus pjegavosti i venuća rajčice (Tomato spotted wilt virus – TSWV) i virus nekrotične pjegavosti vodenike (Impatiens necrotic spot virus – INSV)– biljni virusi koji prijete proizvodnji povrća, ukrasnog i industrijskog bilja. Zagreb: Hrvatski centar za poljoprivredu, hranu i selo.Google Scholar
  14. Kohnić, A., Ostojić, I., & Karić, N. (2006). Vegetable pests in greenhouses in territory of Herzegovina. Radovi Poljoprivrednog Fakulteta Univerziteta u Sarajevu, 51(2), 139–140.Google Scholar
  15. Letunic, I., & Bork, P. (2016). Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research, 44(W1), W242–W245. doi: 10.1093/nar/gkw290.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lian, S., Lee, J.-S., Cho, W. K., Yu, J., Kim, M.-K., Cho, H.-S., & Kim, K.-H. (2013). Phylogenetic and recombination analysis of tomato spotted wilt virus. PloS One, 8(5), e63380. doi: 10.1371/journal.pone.0063380.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Margaria, P., Bosco, L., Vallino, M., Ciuffo, M., Mautino, G. C., Tavella, L., & Turina, M. (2014). The NSS protein of Tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. Journal of Virology, 88(10), 5788–5802.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Margaria, P., Ciuffo, M., Rosa, C., & Turina, M. (2015). Evidence of a tomato spotted wilt virus resistance breaking strain originated through natural reassortment between two evolutionary-distinct isolates. Virus Reseerch, 196, 157–161.CrossRefGoogle Scholar
  19. Mumford, R. A., Barker, I., & Wood, K. R. (1994). The detection of tomato spotted wilt virus using the polymerase chainreaction. Journal of Virological Methods, 46, 303–311.CrossRefPubMedGoogle Scholar
  20. Nikolić, D., Stanković, I., Vučurović, A., Ristić, D., Milojević, K., Bulajić, A., & Krstić, B. (2013). First report of tomato spotted wilt virus on Brugmansia sp. in Serbia. Plant Disease, 9(6), 850.CrossRefGoogle Scholar
  21. Pappu, H. R., Csinos, A. S., McPherson, R. M., Jones, D. C., & Stephenson, M. G. (2000). Effect of acibenzolar-S-methyl and imidacloprid on suppression of tomato spotted wilt Tospovirus in flue-cured tobacco. Crop Protection, 19, 349–354.CrossRefGoogle Scholar
  22. Škorić, D., Krajačić, M., & Šarić, A. (1997). Tomato spotted wilt Tospovitus isolated from pepper plants in Dalmatia. Petria – Giornale di Patologia delle Piante, 7(1), 47–50.Google Scholar
  23. Snippe, M., Willem, B. J., Goldbach, R., & Kormelink, R. (2007). Tomato spotted wilt virus Gc and N proteins interact in vivo. Virology, 357, 115–123.CrossRefPubMedGoogle Scholar
  24. Stanković, I., Bulajić, A., Vučurović, A., Ristić, D., Milojević, K., Berenji, J., & Krstić, B. (2011a). Status of tobacco viruses in Serbia and molecular characterization of tomato spotted wilt virus isolates. Acta Virologica, 55, 337–347.CrossRefPubMedGoogle Scholar
  25. Stanković, I., Bulajić, A., Vučurović, A., Ristić, D., Jović, J., & Krstić, B. (2011b). First report of Tomato spotted wilt virus on Gerbera hybrida in Serbia. Plant Disease, 95(2), 226.CrossRefGoogle Scholar
  26. Stanković, I., Bulajić, A., Vučurović, A., Ristić, D., Milojević, K., Nikolić, D., & Krstić, B. (2012). First report of Tomato spotted wilt virus infecting onion and garlic in Serbia. Plant Disease, 96(6), 918.CrossRefGoogle Scholar
  27. Stanković, I., Bulajić, A., Vučurović., A, Ristić, D., Milojević, K., Nikolić, D., & Krstić, B. (2013) First report of tomato spotted wilt virus on chrysanthemum in Serbia. Plant Disease 97(1), 150–151.Google Scholar
  28. Tentchev, D., Verdin, E., Marchal, C., Jacquet, M., Aguilar, J. M., & Moury, B. (2011). Evolution and structureof Tomato spotted wilt virus populations: Evidence of extensive reassortment and insights into emergence processes. Journal of General Virology, 92, 961–973.CrossRefPubMedGoogle Scholar
  29. Trkulja, V., Mihić Salapura, J., Ćurković, B., Stanković, I., Bulajić, A., Vučurović, A., & Krstić, B. (2013). First report of tomato spotted wilt virus on gloxinia in Bosnia and Herzegovina. Plant Disease, 97, 429.CrossRefGoogle Scholar
  30. Tsompana, M., Abad, J., Purugganan, M., & Moyer, J. W. (2005). The molecular population genetics of the Tomato spottedwilt virus (TSWV) genome. Molecular Ecology, 14, 53–66.CrossRefPubMedGoogle Scholar
  31. Turina, M., Tavella, L., & Ciuffo, M. (2012). Tospoviruses in the Mediterranean area. Advances in Virus Research, 84, 403–437.CrossRefPubMedGoogle Scholar
  32. Turina, M., Kormelink, R., & Resende, O. (2016). Resistance to Tospoviruses in vegetable crops: Epidemiological and molecular aspects. Annual Review of Phytopathology, 54, 347–371.CrossRefPubMedGoogle Scholar
  33. Vučurović, A., Bulajić, A., Stanković, I., Ristić, D., Berenji, J., Jović, J., & Krstić, B. (2012). Non-persistently aphid-borne viruses infecting pumpkin and squash in Serbia and partial characterization of zucchini yellow mosaic virus isolates. European Journal of Plant Pathology, 133, 935–947.CrossRefGoogle Scholar
  34. Webster, C. G., Frantz, G., Reitz, S. R., Funderburk, J. E., Mellinger, H. C., Turechek, W. W., Marshall, S. H., Tantiwanich, Y., McGrath, M. T., Daughtrey, M. L., & Adkins, S. (2015). Emergence of Groundnutringspot virus and Tomato chlorotic spot virus in vegetables in Florida and the southeastern United States. Phytopathology, 105, 388–398.CrossRefPubMedGoogle Scholar
  35. Zhang, Z., Wang, D., Yu, C., Wang, Z., Dong, J., Shi, K., & Yuan, X. (2016). Identification of three new isolates of tomato spotted wilt virus from different hosts in China: Molecular diversity, phylogenetic and recombination analyses. Virology Journal, 13(8), 1–12.Google Scholar
  36. Zindović, J., Bulajić, A., Krstić, B., Ciuffo, M., Margaria, P., & Turina, M. (2011). First report of tomato spotted wilt virus on pepper in Montenegro. Plant Disease, 95(7), 882.CrossRefGoogle Scholar
  37. Zindović, J., Ciuffo, M., & Turina, M. (2014). Molecular characterization of tomato spotted wilt virus in Montenegro. Journal of Plant Pathology, 96(1), 201–205.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  1. 1.Faculty of AgricultureUniversity of BanjalukaBanjalukaBosnia and Herzegovina
  2. 2.Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (CNR)BariItaly

Personalised recommendations