Root exudates of potato onion are involved in the suppression of clubroot in a Chinese cabbage-potato onion-Chinese cabbage crop rotation

  • Shaocan Chen
  • Xingang Zhou
  • Hongjie Yu
  • Fengzhi Wu
Article

Abstract

Clubroot, caused by Plasmodiophora brassicae, has emerged as a serious disease threatening cruciferous crop production throughout the world. Crop rotation with non-host species is commonly practised to avoid clubroot, but it is not known whether rotation crops can control clubroot when the resting spores of P. brassicae remain unaffected. Pot experiments were performed to investigate the response of clubroot in Chinese cabbage to crop rotation with potato onion. The results showed that Chinese cabbage rotated with potato onion exhibited less clubroot disease than Chinese cabbage monoculture. Compared with residues from potato onion, the addition of root exudates from potato onion significantly decreased the disease incidence and index of clubroot (p ≤ 0.05). Potato onion root exudates decreased the number of secondary plasmodia of P. brassicae and the expression of the PRO1 gene of P. brassicae. These results suggest that root exudates from potato onion may play an important role in suppressing clubroot in a Chinese cabbage-potato onion-Chinese cabbage rotation system.

Keywords

Crop rotation Disease resistance Clubroot Root exudates Potato onion 

References

  1. Ando, S., Yamada, T., Asano, T., Kamachi, S., Tsushima, S., Hagio, T., & Tabei, Y. (2006). Molecular cloning of PbSTKL1 gene from Plasmodiophora Brassicae expressed during clubroot development. Journal of Phytopathology, 154(3), 185–189.CrossRefGoogle Scholar
  2. Arnault, I., Fleurance, C., Vey, F., Du Fretay, G., & Auger, J. (2013). Use of Alliaceae residues to control soil-borne pathogens. Industrial Crops and Products, 49, 265–272.CrossRefGoogle Scholar
  3. Auger, J., Arnault, I., Diwo-Allain, S., Ravier, M., Molia, F., & Pettiti, M. (2004). Insecticidal and fungicidal potential of allium substances as biofumigants. Agroindustria, 3(3), 367–370.Google Scholar
  4. Bai, G., & Shaner, G. (2004). Management and resistance in wheat and barley to fusarium head blight. Annual Review of Phytopathology, 42, 135–161.CrossRefPubMedGoogle Scholar
  5. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.CrossRefPubMedGoogle Scholar
  6. Benkeblia, N. (2004). Antimicrobial activity of essential oil extracts of various onions (Allium Cepa) and garlic (Allium Sativum). LWT- Food Science and Technology, 37(2), 263–268.CrossRefGoogle Scholar
  7. Ben-Yephet, Y., Frank, Z., Malero-Vera, J., & DeVay, J. (1989). Effect of crop rotation and metham-sodium on Verticillium dahliae. In E. C. Tjamos & C. H. Beckman (Eds.), Vascular wilt diseases of plants (pp. 543–555). Berlin: Springer.CrossRefGoogle Scholar
  8. Bonkowski, M. (2004). Protozoa and plant growth: The microbial loop in soil revisited. New Phytologist, 162(3), 617–631.CrossRefGoogle Scholar
  9. Brodmann, A., Schuller, A., Ludwig-Müller, J., Aeschbacher, R. A., Wiemken, A., Boller, T., & Wingler, A. (2002). Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora Brassicae. Molecular Plant-Microbe Interactions, 15(15), 693–700.CrossRefPubMedGoogle Scholar
  10. van Bruggen, A. H., Semenov, A. M., van Diepeningen, A. D., de Vos, O. J., & Blok, W. J. (2006). Relation between soil health, wave-like fluctuations in microbial populations, and soil-borne plant disease management. In S. Savary & B. M. Cooke (Eds.), Plant disease epidemiology: Facing challenges of the 21st century (pp. 105–122). Dordrecht: Springer.CrossRefGoogle Scholar
  11. Caporaso, J. G., Kuczynski, J., & Stombaugh, J. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Casadevall, A., & Pirofski, L. (2001). Host-pathogen interactions: The attributes of virulence. Journal of Infectious Diseases, 184(3), 337–344.CrossRefPubMedGoogle Scholar
  13. Cheah L, Kent G, Gowers S (2001) Brassica crops and a Streptomyces sp. as potential biocontrol for clubroot of brassicas. Proceedings of the New Zealand plant protection conference. Auckland: New Zealand Plant Protection Society, pp 80–83.Google Scholar
  14. Cook, R. J. (2006). From the academy: Colloquium perspective. Toward cropping systems that enhance productivity and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 103(49), 18389–18394.CrossRefPubMedPubMedCentralGoogle Scholar
  15. De la Peña, C., Lei, Z., Watson, B. S., Sumner, L. W., & Vivanco, J. M. (2008). Root-microbe communication through protein secretion. Journal of Biological Chemistry, 283(37), 25247–25255.CrossRefGoogle Scholar
  16. Diederichsen, E., Frauen, M., Linders, E. G. A., Hatakeyama, K., & Hirai, M. (2009). Status and perspectives of clubroot resistance breeding in crucifer crops. Journal of Plant Growth Regulation, 28(3), 265–281.CrossRefGoogle Scholar
  17. Dixon, G. R. (2009). The occurrence and economic impact of Plasmodiophora Brassicae and clubroot disease. Journal of Plant Growth Regulation, 28(3), 194–202.CrossRefGoogle Scholar
  18. Donald, E., & Porter, I. (2004). A sand—Solution culture technique used to observe the effect of calcium and pH on root hair and cortical stages of infection by Plasmodiophora Brassicae. Australasian Plant Pathology, 33(4), 585–589.CrossRefGoogle Scholar
  19. Donald, E., Porter, I., & Lancaster, R. (2001). Band incorporation of fluazinam (Shirlan) into soil to control clubroot of vegetable brassica crops. Animal Production Science, 41(8), 1223–1226.CrossRefGoogle Scholar
  20. Donald, C., Porter, I., & Dixon, G. R. (2009). Integrated control of clubroot. Journal of Plant Growth Regulation, 28(3), 289–303.CrossRefGoogle Scholar
  21. Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996–998. doi:10.1038/nmeth.2604.CrossRefPubMedGoogle Scholar
  22. Eisenhauer, N., Beßler, H., Engels, C., Gleixner, G., Habekost, M., Milcu, A., Partsch, S., Sabais, A., Scherber, C., & Steinbeiss, S. (2010). Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology, 91(2), 485–496.CrossRefPubMedGoogle Scholar
  23. Eisenhauer, N., Milcu, A., Sabais, A. C., Bessler, H., Brenner, J., Engels, C., Klarner, B., Maraun, M., Partsch, S., & Roscher, C. (2011). Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PloS One, 6(1), e16055.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fan, B., Carvalhais, L. C., Becker, A., Fedoseyenko, D., von Wirén, N., & Borriss, R. (2012). Transcriptomic profiling of bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiology, 12(1), 116.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Feng, J., Hwang, R., Hwang, S. F., Strelkov, S. E., Gossen, B. D., Zhou, Q. X., & Peng, G. (2010). Molecular characterization of a serine protease Pro1 from Plasmodiophora Brassicae that stimulates resting spore germination. Molecular Plant Pathology, 11(4), 503–512.CrossRefPubMedGoogle Scholar
  26. Feng, J., Hwang, S.-F., & Strelkov, S. E. (2013). Assessment of gene expression profiles in primary and secondary zoospores of Plasmodiophora Brassicae by dot blot and real-time PCR. Microbiological Research, 168(8), 518–524.CrossRefPubMedGoogle Scholar
  27. Friberg, H., Lagerlöf, J., & Rämert, B. (2005). Germination of Plasmodiophora Brassicae resting spores stimulated by a non-host plant. European Journal of Plant Pathology, 113(3), 275–281.CrossRefGoogle Scholar
  28. Friberg, H., Lagerlöf, J., & Rämert, B. (2006). Usefulness of nonhost plants in managing Plasmodiophora Brassicae. Plant Pathology, 55(5), 690–695.CrossRefGoogle Scholar
  29. Guo, X., Fernando, W., & Entz, M. (2005). Effects of crop rotation and tillage on blackleg disease of canola. Canadian Journal of Plant Pathology, 27(1), 53–57.CrossRefGoogle Scholar
  30. Ito, S., Ichinose, H., Yanagi, C., Tanaka, S., Kameya-Iwaki, M., & Kishi, F. (1999). Identification of an in planta -induced mRNA of Plasmodiophora Brassicae. Journal of Phytopathology, 147(2), 79–82.CrossRefGoogle Scholar
  31. Iwalokun, B., Ogunledun, A., Ogbolu, D., Bamiro, S., & Jimi-Omojola, J. (2004). In vitro antimicrobial properties of aqueous garlic extract against multidrug-resistant bacteria and Candida species from Nigeria. Journal of Medicinal Food, 7(3), 327–333.CrossRefPubMedGoogle Scholar
  32. Jan, A. T., Azam, M., Ali, A., & Haq, Q. M. R. (2011). Novel approaches of beneficial pseudomonas in mitigation of plant diseases–an appraisal. Journal of Plant Interactions, 6(4), 195–205.CrossRefGoogle Scholar
  33. Kapoor, A., Paul, Y., & Singh, A. (2012). Integrated management of white rot and root rot–wilt disease complex of pea. Indian Phytopathology, 59(4), 467–474.Google Scholar
  34. Kim, J. W., Kim, Y. S., & Kyung, K. H. (2004). Inhibitory activity of essential oils of garlic and onion against bacteria and yeasts. Journal of Food Protection, 67(3), 499–504.CrossRefPubMedGoogle Scholar
  35. Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75(15), 5111–5120.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lee, S. B., Lee, C. S., Yong, K. K., Lee, S. Y., & Kim, C. H. (2001). Effects of crop rotation on the development of clubroot disease of Chinese cabbage caused by Plasmodiophora Brassicae. Plant Pathology Journal, 17(6), 369–364.Google Scholar
  37. Li, Z. A., Zou, B., Ding, Y. Z., Tang, W. N., Xia, H. P., Shen, C. D., & Sun, Y. M. (2005). Effect of plant residues on soil acidity and its mechanisms. Acta Ecologica Sinica, 2(9), 2382–2388.Google Scholar
  38. Liu, S., Wu, F., & Wen, X. (2013). Allelopathic effects of root exudates of Chinese onion on tomato growth and the pathogen fusarium oxysporum (Sch 1) f. Sp. lycopersici. Allelopathy Journal, 31(2), 387.Google Scholar
  39. Ludwig-Mueller, J., Juelke, S., Geiss, K., Richter, F., Mithoefer, A., Sola, I., Rusak, G., Keenan, S., & Bulman, S. (2015). A novel methyltransferase from the intracellular pathogen Plasmodiophora Brassicae methylates salicylic acid. Molecular Plant Pathology, 16(4), 349–364. doi:10.1111/mpp.12185.CrossRefGoogle Scholar
  40. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.CrossRefPubMedGoogle Scholar
  41. Magoč, T., & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21), 2957–2963.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Motisi, N., Montfort, F., Faloya, V., Lucas, P., & Doré, T. (2009). Growing Brassica Juncea as a cover crop, then incorporating its residues provide complementary control of Rhizoctonia root rot of sugar beet. Field Crops Research, 113(3), 238–245.CrossRefGoogle Scholar
  43. Murakami, H., Tsushima, S., Akimoto, T., & Shishido, Y. (2001). Reduction of spore density of Plasmodiophora Brassicae in soil by decoy plants. Journal of General Plant Pathology, 67(1), 85–88.CrossRefGoogle Scholar
  44. Peng, G., Mcgregor, L., Lahlali, R., Gossen, B. D., Hwang, S. F., Adhikari, K. K., Strelkov, S. E., & Mcdonald, M. R. (2011). Potential biological control of clubroot on canola and crucifer vegetable crops. Plant Pathology, 60(3), 566–574.CrossRefGoogle Scholar
  45. Peng, G., Pageau, D., Strelkov, S. E., Gossen, B. D., Hwang, S.-F., & Lahlali, R. (2015). A> 2-year crop rotation reduces resting spores of Plasmodiophora Brassicae in soil and the impact of clubroot on canola. European Journal of Agronomy, 70, 78–84.CrossRefGoogle Scholar
  46. Pérez-García, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: Biotechnological applications of bacilli in agriculture. Current Opinion in Biotechnology, 22(2), 187–193.CrossRefPubMedGoogle Scholar
  47. Peters, R., Sturz, A., Carter, M., & Sanderson, J. (2003). Developing disease-suppressive soils through crop rotation and tillage management practices. Soil and Tillage Research, 72(2), 181–192.CrossRefGoogle Scholar
  48. Prather, T., Lanini, W., Orloff, S., Vargas, R., Schmierer, J., Canevari, W., Mueller, S., Bendixen, W., & Krebill-Prather, R. (2000). Interplanting grasses into alfalfa controls weeds in older stands. California Agriculture, 54(6), 37–41.CrossRefGoogle Scholar
  49. Rashid, A., Ahmed, H., Xiao, Q., Hwang, S., & Strelkov, S. (2013). Effects of root exudates and pH on Plasmodiophora Brassicae resting spore germination and infection of canola (Brassica Napus L.) root hairs. Crop Protection, 48, 16–23.CrossRefGoogle Scholar
  50. Rolfe, S. A., Strelkov, S. E., Links, M. G., Clarke, W. E., Robinson, S. J., Djavaheri, M., Malinowski, R., Haddadi, P., Kagale, S., Parkin, I. A. P., Taheri, A., & Borhan, M. H. (2016). The compact genome of the plant pathogen Plasmodiophora Brassicae is adapted to intracellular interactions with host brassica spp. BMC Genomics, 17(1), 272. doi:10.1186/s12864-016-2597-2.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schlatter, D. C., Bakker, M. G., Bradeen, J. M., & Kinkel, L. L. (2015). Plant community richness and microbial interactions structure bacterial communities in soil. Ecology, 96(1), 134–142.CrossRefPubMedGoogle Scholar
  52. Schwelm, A., Fogelqvist, J., Knaust, A., Juelke, S., Lilja, T., Bonilla-Rosso, G., Karlsson, M., Shevchenko, A., Dhandapani, V., Choi, S. R., Kim, H. G., Park, J. Y., Lim, Y. P., Ludwig-Mueller, J., & Dixelius, C. (2015). The Plasmodiophora Brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Scientific Reports, 5, 11153. doi:10.1038/srep11153.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Siemens, J., Nagel, M., Ludwig-Müller, J., & Sacristán, M. D. (2002). The interaction of Plasmodiophora Brassicae and Arabidopsis Thaliana : Parameters for disease quantification and screening of mutant lines. Journal of Phytopathology, 150(11–12), 592–605.CrossRefGoogle Scholar
  54. Siemens, J., Graf, H., Bulman, S., & Ludwigmüller, J. (2009). Monitoring expression of selected Plasmodiophora Brassicae genes during clubroot development in Arabidopsis Thaliana. Plant Pathology, 58(1), 130–136.CrossRefGoogle Scholar
  55. Singh, P., Ghosh, S., & Datta, A. (2002). Attenuation of virulence and changes in morphology in Candida Albicans by disruption of the N-acetylglucosamine catabolic pathway. Infection and Immunity, 69(12), 7898–7903.CrossRefGoogle Scholar
  56. St Leger, R., Screen, S., Butt, T., Jackson, C., & Magan, N. (2001). Prospects for strain improvement of fungal pathogens of insects and weeds. In T. M. Butt, C. W. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents: Progress, problems and potential (pp. 219–237). Oxon: CABI Publishingpp.CrossRefGoogle Scholar
  57. Wallenhammar, A. C., Almquist, C., Söderström, M., & Jonsson, A. (2012). In-field distribution of Plasmodiophora Brassicae measured using quantitative real-time PCR. Plant Pathology, 61(1), 16–28.CrossRefGoogle Scholar
  58. Wardle, D. A. (2006). The influence of biotic interactions on soil biodiversity. Ecology Letters, 9(7), 870–886.CrossRefPubMedGoogle Scholar
  59. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols, 18(1), 315–322.Google Scholar
  60. Wite, D., Mattner, S. W., Porter, I. J., & Arioli, T. (2015). The suppressive effect of a commercial extract from Durvillaea potatorum and Ascophyllum Nodosum on infection of broccoli by Plasmodiophora Brassicae. Journal of Applied Phycology, 27(5), 2157–2161.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wu, L.-y., Siemens, J., S-k, L., Ludwig-Müller, J., Y-j, G., Zhong, L., & He, J.-m. (2012). Estimating Plasmodiophora Brassicae gene expression in lines of B. Rapa by RT-PCR. Scientia Horticulturae, 133, 1–5.CrossRefGoogle Scholar
  62. Yang, L., Wang, Y., Song, J., Zhao, W., He, X., Chen, J., & Xiao, M. (2011a). Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas Fluorescens strain in different contaminated environments. Soil Biology and Biochemistry, 43(5), 915–922.CrossRefGoogle Scholar
  63. Yang, Y., Fengzhi, W., & Shouwei, L. (2011b). Allelopathic effects of root exudates of Chinese onion accessions on cucumber yield and fusarium oxysporum f. Sp. cucumerinum. Allelopathy Journal, 27(1), 75–85.Google Scholar
  64. Yang, Z., Bai, Y. J., Miao, Z. Y., Li, Y., & Zhao, K. H. (2013). Identification of physiological races of Plasmodiophora Brassicae causing club root in Chinese cabbage from Northeast China. Journal of Hunan Agricultural University, 39(2), 176–178.Google Scholar
  65. Yu, J. Q., Ye, S. F., Zhang, M. F., & Hu, W. H. (2003). Effects of root exudates and aqueous root extracts of cucumber (Cucumis Sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochemical Systematics and Ecology, 31(2), 129–139.CrossRefGoogle Scholar
  66. Zhang, H., Mallik, A., & Zeng, R. S. (2013). Control of Panama disease of banana by rotating and intercropping with Chinese chive (Allium Tuberosum Rottler): Role of plant volatiles. Journal of Chemical Ecology, 39(2), 243–252.CrossRefPubMedGoogle Scholar
  67. Zhou, X., Liu, J., & Wu, F. (2017). Soil microbial communities in cucumber monoculture and rotation systems and their feedback effects on cucumber seedling growth. Plant and Soil. doi:10.1007/s11104-017-3181-5.

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Shaocan Chen
    • 1
    • 2
  • Xingang Zhou
    • 1
    • 2
  • Hongjie Yu
    • 1
    • 2
  • Fengzhi Wu
    • 1
    • 2
  1. 1.Department of HorticultureNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.Key Laboratory of Cold Area Vegetable BiologyNortheast Agricultural UniversityHarbinPeople’s Republic of China

Personalised recommendations