Skip to main content
Log in

Potential control of forest diseases by solutions of chitosan oligomers, propolis and nanosilver

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

There is a growing necessity to replace chemical agents with ecofriendly materials, arising from the impact on the environment and/or human health, which calls for the design of new broad-spectrum fungicides. In this work, chitosan oligomers (COs), propolis (Ps) and silver nanoparticles (AgNPs) mixtures in solution were assessed to control the growth of different phytopathogenic fungi and oomycetes in vitro. Binary solutions of COs-Ps and COs-AgNPs evinced the highest antifungal effect against Fusarium circinatum and Diplodia pinea fungi, respectively, with a ca. 80% reduction in their mycelial growth. The COs solution by itself also proved to be greatly effective against Gremmeniella abietina, Cryphonectria parasitica and Heterobasidion annosum fungi, causing a reduction of 78%, 86% and 93% in their growth rate, respectively. Likewise, COs also attained a 100% growth inhibition on the oomycete Phytophthora cambivora. On the other hand, Ps inhibited totally the growth of Phytophthora ×alni and Phytophthora plurivora. The application of AgNPs reduced the mycelial growth of F. circinatum and D. pinea. However, the AgNPs in some binary and ternary mixtures had a counter-productive effect on the anti-fungal/oomycete activity. In spite of the fact that the anti-fungal/oomycete activity of the different treatments showed a dependence on the particular type of microorganism, these solutions based on natural compounds can be deemed as a promising tool for control of tree diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adamson, K., Klavina, D., Drenkhan, R., Gaitnieks, T., & Hanso, M. (2015). Diplodia sapinea is colonizing the native scots pine (Pinus sylvestris) in the northern Baltics. European Journal of Plant Pathology, 143(2), 343–350. doi:10.1007/s10658-015-0686-8.

    Article  Google Scholar 

  • Araujo-Rufino, C., Fernandes-Vieira, J., Martín-Ramos, P., Silva-Castro, I., Fernandes-Correa, M., Matei, P. M., et al. (2016). Synthesis of chitosan oligomers composite systems and study of their activity against Bipolaris Oryzae. Journal of Materials Science and Engineering with Advanced Technology, 13(1), 29–52. doi:10.18642/jmseat_7100121578.

    Article  Google Scholar 

  • Asiegbu, F. O., Adomas, A., & Stenlid, J. A. N. (2005). Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. S.L. Molecular Plant Pathology, 6(4), 395–409. doi:10.1111/j.1364-3703.2005.00295.x.

    Article  PubMed  Google Scholar 

  • Avelelas, F. P., Pinto, L. F., Velez, C., Azinheiro, S., Rodrigues, A., & Leandro, S. M. (2014). Antifungal activity of low molecular weight chitosan produced from non-traditional marine resources. Frontiers in Marine Science, 1, doi:10.3389/conf.FMARS.2014.02.00048.

  • Boonlertnirun, S., Boonraung, C., & Suvanasara, R. (2008). Application of chitosan in rice production. Journal of Metals, Materials and Minerals, 18(2), 47–52.

    CAS  Google Scholar 

  • Botella, L., Tuomivirta, T. T., Kaitera, J., Carrasco Navarro, V., Diez, J. J., & Hantula, J. (2010). Spanish population of Gremmeniella abietina is genetically unique but related to type a in Europe. Fungal Biology, 114(9), 778–789. doi:10.1016/j.funbio.2010.07.003.

    Article  PubMed  Google Scholar 

  • Branca, C., D'Angelo, G., Crupi, C., Khouzami, K., Rifici, S., Ruello, G., et al. (2016). Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films. Polymer, 99, 614–622. doi:10.1016/j.polymer.2016.07.086.

    Article  CAS  Google Scholar 

  • Chowdappa, P., Gowda, S., Chethana, C. S., & Madhura, S. (2014). Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. African Journal of Microbiology Research, 8(17), 1803–1812. doi:10.5897/ajmr2013.6584.

    Article  Google Scholar 

  • Cobos, R., Mateos, R. M., Álvarez-Pérez, J. M., Olego, M. A., Sevillano, S., González-García, S., et al. (2015). Effectiveness of natural antifungal compounds in controlling infection by grapevine trunk disease pathogens through pruning wounds. Applied and Environmental Microbiology, 81(18), 6474–6483. doi:10.1128/aem.01818-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8(4), 968–987. doi:10.3390/md8040968.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooqui, T. (2012). Beneficial effects of propolis on human health and neurological diseases. Frontiers in Bioscience, E4(1), 779. doi:10.2741/e418.

    Article  CAS  Google Scholar 

  • Fitza, K. N. E., Payn, K. G., Steenkamp, E. T., Myburg, A. A., & Naidoo, S. (2013). Chitosan application improves resistance to Fusarium circinatum in Pinus patula. South African Journal of Botany, 85, 70–78. doi:10.1016/j.sajb.2012.12.006.

    Article  CAS  Google Scholar 

  • Franca, J. R., De Luca, M. P., Ribeiro, T. G., Castilho, R. O., Moreira, A. N., Santos, V. R., et al. (2014). Propolis-based chitosan varnish: Drug delivery, controlled release and antimicrobial activity against oral pathogen bacteria. BMC Complementary and Alternative Medicine, 14(1). doi:10.1186/1472-6882-14-478.

  • Garbelotto, M., & Gonthier, P. (2013). Biology, epidemiology, and control of Heterobasidion species worldwide. Annual Review of Phytopathology, 51(1), 39–59. doi:10.1146/annurev-phyto-082712-102225.

    Article  CAS  PubMed  Google Scholar 

  • García Pérez, A. (2011). Técnicas actuales de estadística aplicada. http://www2.uned.es/master-tecnicas-estadisticas/Material/GuiaM.pdf.

  • Gibson, I. A. S. (1979). Diseases of forest trees widely planted as exotics in the tropics and southern hemisphere. Part II. The genus Pinus. Kew, UK; Commonwealth Mycological Institute; Oxford: Commonwealth Forestry Institute.

  • González-Varela, G., González, A. J., & Milgroom, M. G. (2011). Clonal population structure and introductions of the chestnut blight fungus, Cryphonectria parasitica, in Asturias, northern Spain. European Journal of Plant Pathology, 131(1), 67–79. doi:10.1007/s10658-011-9788-0.

    Article  Google Scholar 

  • Gordon, T. R., Swett, C. L., & Wingfield, M. J. (2015). Management of Fusarium diseases affecting conifers. Crop Protection, 73, 28–39. doi:10.1016/j.cropro.2015.02.018.

    Article  Google Scholar 

  • Gu, C., Zhang, H., & Lang, M. (2014). Preparation of mono-dispersed silver nanoparticles assisted by chitosan-g-poly(ɛ-caprolactone) micelles and their antimicrobial application. Applied Surface Science, 301(0), 273–279. doi:10.1016/j.apsusc.2014.02.059.

    Article  CAS  Google Scholar 

  • Haque, M. M., Martínez-Álvarez, P., Lomba, J. M., Martín-García, J., & Diez, J. J. (2014). First report of Phytophthora plurivora causing collar rot on common alder in Spain. Plant Disease, 98(3), 425–425. doi:10.1094/pdis-07-13-0784-pdn.

    Article  Google Scholar 

  • Haque, M. M. U., Hidalgo, E., Martín-García, J., De-Lucas, A. I., & Diez, J. J. (2015). Morphological, physiological and molecular characterization of Phytophthora alni isolates from western Spain. European Journal of Plant Pathology, 142(4), 731–745. doi:10.1007/s10658-015-0647-2.

    Article  Google Scholar 

  • Heiniger, U., & Rigling, D. (1994). Biological control of chestnut blight in Europe. Annual Review of Phytopathology, 32(1), 581–599. doi:10.1146/annurev.py.32.090194.003053.

    Article  Google Scholar 

  • Hirooka, T., & Ishii, H. (2013). Chemical control of plant diseases. Journal of General Plant Pathology, 79(6), 390–401. doi:10.1007/s10327-013-0470-6.

    Article  CAS  Google Scholar 

  • Husson, C., Aguayo, J., Revellin, C., Frey, P., Ioos, R., & Marçais, B. (2015). Evidence for homoploid speciation in Phytophthora alni supports taxonomic reclassification in this species complex. Fungal Genetics and Biology, 77, 12–21. doi:10.1016/j.fgb.2015.02.013.

    Article  CAS  PubMed  Google Scholar 

  • Iturritxa, E., Mesanza, N., & Aitken, J. (2013). Bioensayos de control biológico y químico frente a Fusarium circinatum en Pinus radiata. In VI Congreso Forestal Español, Vitoria-Gasteiz, Spain, June 10–14, 2013 (pp. 1–8): Sociedad Española de Ciencias Forestales.

  • Jayakumar, R., Prabaharan, M., & Muzzarelli, R. A. A. (2011). Chitosan for biomaterials (advances in polymer science,, Vol. 243–244). Heidelberg. New York: Springer.

    Google Scholar 

  • Jemec, A., Kahru, A., Potthoff, A., Drobne, D., Heinlaan, M., Böhme, S., et al. (2016). An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data. Environment International, 87, 20–32. doi:10.1016/j.envint.2015.10.014.

    Article  CAS  PubMed  Google Scholar 

  • Jönsson-Belyazio, U., & Rosengren, U. (2006). Can Phytophthora quercina have a negative impact on mature pedunculate oaks under field conditions? Annals of Forest Science, 63(7), 661–672. doi:10.1051/forest:2006047.

    Article  Google Scholar 

  • Jung, T., & Burgess, T. I. (2009). Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia - Molecular Phylogeny and Evolution of Fungi, 22(1), 95–110. doi:10.3767/003158509x442612.

    Article  CAS  PubMed Central  Google Scholar 

  • Jung, T., Hudler, G. W., Jensen-Tracy, S. L., Griffiths, H. M., Fleischmann, F., & Osswald, W. (2005). Involvement of Phytophthora species in the decline of European beech in Europe and the USA. Mycologist, 19(4), 159–166. doi:10.1017/S0269915X05004052.

    Article  Google Scholar 

  • Kaitera, J., & Jalkanen, R. (1992). Disease history of Gremmeniella abietina in a Pinus sylvestris stand. Forest Pathology, 22(6–7), 371–378. doi:10.1111/j.1439-0329.1992.tb00309.x.

    Article  Google Scholar 

  • Kashyap, P. L., Kumar, S., Srivastava, A. K., & Sharma, A. K. (2012). Myconanotechnology in agriculture: A perspective. World Journal of Microbiology and Biotechnology, 29(2), 191–207. doi:10.1007/s11274-012-1171-6.

    Article  PubMed  Google Scholar 

  • Kurzawińska, H., & Mazur, S. (2006). The effect of Pythium oligandrum and chitosan used in control of potato against late blight and the occurrence of fungal diseases on tuber peel. Communications in Agricultural and Applied Biological Sciences, 72(4), 967–971.

    Google Scholar 

  • Laflamme, P., Benhamou, N., Bussières, G., & Dessureault, M. (2000). Differential effect of chitosan on root rot fungal pathogens in forest nurseries. Canadian Journal of Botany, 77(10), 1460–1468. doi:10.1139/b99-111.

    Article  Google Scholar 

  • Leuba, J. L., and Stössel, P. (1986). Chitosan and other polyamines: Antifungal activity and interaction with biological membranes. In R. Muzzarelli, C. Jeauniaux, and G. W. Gooday (Eds.), Chitin in nature and technology (pp. 215–222). New-York: Plenum Press.

  • Mahdizadeh, V., Safaie, N., & Khelghatibana, F. (2015). Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. Journal of Crop Protection, 4(3), 291–300.

    Google Scholar 

  • Marcucci, M. C. (1995). Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie, 26(2), 83–99. doi:10.1051/apido:19950202.

    Article  CAS  Google Scholar 

  • Mărghitaş, L. A., Dezmirean, D. S., & Bobiş, O. (2013). Important developments in Romanian propolis research. Evidence-based Complementary and Alternative Medicine, 2013, 1–9. doi:10.1155/2013/159392.

    Google Scholar 

  • Martínez-Álvarez, P., Alves-Santos, F., & Diez, J. (2012). In vitro and in vivo interactions between Trichoderma viride and Fusarium circinatum. Silva Fennica, 46(3), doi:10.14214/sf.42.

  • Martínez-Álvarez, P., Fernández-González, R. A., Sanz-Ros, A. V., Pando, V., & Diez, J. J. (2016). Two fungal endophytes reduce the severity of pitch canker disease in Pinus radiata seedlings. Biological Control, 94, 1–10. doi:10.1016/j.biocontrol.2015.11.011.

    Article  Google Scholar 

  • Matei, P. M., Martin-Ramos, P., Sanchez-Bascones, M., Hernandez-Navarro, S., Correa-Guimaraes, A., Navas-Gracia, L. M., et al. (2015). Synthesis of chitosan oligomers/Propolis/silver nanoparticles composite systems and study of their activity against Diplodia seriata. International Journal of Polymer Science, 2015, 1–11. doi:10.1155/2015/864729.

    Article  Google Scholar 

  • Narayanan, K. B., & Park, H. H. (2014). Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. European Journal of Plant Pathology, 140(2), 185–192. doi:10.1007/s10658-014-0399-4.

    Article  CAS  Google Scholar 

  • Ngo, D.-H., Vo, T.-S., Ngo, D.-N., Kang, K.-H., Je, J.-Y., Pham, H. N. D., et al. (2015). Biological effects of chitosan and its derivatives. Food Hydrocolloids, 51, 200–216. doi:10.1016/j.foodhyd.2015.05.023.

    Article  CAS  Google Scholar 

  • Olicón-Hernández, D. R., Hernández-Lauzardo, A. N., Pardo, J. P., Peña, A., Velázquez-del Valle, M. G., & Guerra-Sánchez, G. (2015). Influence of chitosan and its derivatives on cell development and physiology of Ustilago maydis. International Journal of Biological Macromolecules, 79, 654–660. doi:10.1016/j.ijbiomac.2015.05.057.

    Article  PubMed  Google Scholar 

  • Oskazo, T. (2007). Alder decline in Poland. Communicationes Instituti Forestalis Bohemicae, Vulhm, 23, 125–137.

    Google Scholar 

  • Özcan, M., Ünver, A., Ceylan, D. A., & Yetisir, R. (2004). Inhibitory effect of pollen and propolis extracts. Nahrung/Food, 48(3), 188–194. doi:10.1002/food.200300296.

    Article  PubMed  Google Scholar 

  • Qiu, M., Wu, C., Ren, G., Liang, X., Wang, X., & Huang, J. (2014). Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus. Food Chemistry, 155, 105–111. doi:10.1016/j.foodchem.2014.01.026.

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team. (2016). R: A language and environment for statistical computing. (3.3.1 ed.). Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Reglinski, T., Taylor, J. T., & Dick, M. A. (2004). Chitosan induces resistance to pitch canker in Pinus radiata. New Zealand Journal of Forestry Science, 34(1), 49–58.

    CAS  Google Scholar 

  • Romeralo, C., Witzell, J., Romeralo-Tapia, R., Botella, L., & Diez, J. J. (2015). Antagonistic activity of fungal endophyte filtrates against Gremmeniella abietina infections on Aleppo pine seedlings. European Journal of Plant Pathology, 143(4), 691–704. doi:10.1007/s10658-015-0719-3.

    Article  Google Scholar 

  • Saharan, V., Mehrotra, A., Khatik, R., Rawal, P., Sharma, S. S., & Pal, A. (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules, 62, 677–683. doi:10.1016/j.ijbiomac.2013.10.012.

    Article  CAS  PubMed  Google Scholar 

  • Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., et al. (2015). Synthesis and in vitro antifungal efficacy of cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, 75, 346–353. doi:10.1016/j.ijbiomac.2015.01.027.

    Article  CAS  PubMed  Google Scholar 

  • Singh, T., Vesentini, D., Singh, A. P., & Daniel, G. (2008). Effect of chitosan on physiological, morphological, and ultrastructural characteristics of wood-degrading fungi. International Biodeterioration & Biodegradation, 62(2), 116–124. doi:10.1016/j.ibiod.2007.09.006.

    Article  CAS  Google Scholar 

  • Siripatrawan, U., & Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocolloids, 61, 695–702. doi:10.1016/j.foodhyd.2016.06.001.

    Article  CAS  Google Scholar 

  • Stroescu, M., Stoica-Guzun, A., Isopencu, G., Jinga, S. I., Parvulescu, O., Dobre, T., et al. (2015). Chitosan-vanillin composites with antimicrobial properties. Food Hydrocolloids, 48, 62–71. doi:10.1016/j.foodhyd.2015.02.008.

    Article  CAS  Google Scholar 

  • Torlak, E., & Sert, D. (2013). Antibacterial effectiveness of chitosan–propolis coated polypropylene films against foodborne pathogens. International Journal of Biological Macromolecules, 60, 52–55. doi:10.1016/j.ijbiomac.2013.05.013.

    Article  CAS  PubMed  Google Scholar 

  • Venkatesham, M., Ayodhya, D., Madhusudhan, A., Veera Babu, N., & Veerabhadram, G. (2012). A novel green one-step synthesis of silver nanoparticles using chitosan: Catalytic activity and antimicrobial studies. Applied Nanoscience, 4(1), 113–119. doi:10.1007/s13204-012-0180-y.

    Article  Google Scholar 

  • Wang, W.-Q., Zhang, P., Meng, R.-J., Zhao, J.-J., Huang, Q.-L., Han, X.-Y., et al. (2014). Fungitoxicity and synergism of mixtures of fluopicolide and pyraclostrobin against Phytophthora infestans. Crop Protection, 57, 48–56. doi:10.1016/j.cropro.2013.11.027.

    Article  CAS  Google Scholar 

  • Wang, L.-S., Wang, C.-Y., Yang, C.-H., Hsieh, C.-L., Chen, S.-Y., Shen, C.-Y., et al. (2015). Synthesis and anti-fungal effect of silver nanoparticles-chitosan composite particles. International Journal of Nanomedicine, 2685, doi:10.2147/ijn.s77410.

  • Wei, D., Sun, W., Qian, W., Ye, Y., & Ma, X. (2009). The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydrate Research, 344(17), 2375–2382. doi:10.1016/j.carres.2009.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Wilcox, R. R. (2016). Introduction to robust estimation and hypothesis testing (4th ed.). Waltham: Elsevier.

    Google Scholar 

  • Wingfield, M. J., Hammerbacher, A., Ganley, R. J., Steenkamp, E. T., Gordon, T. R., Wingfield, B. D., et al. (2008). Pitch canker caused by Fusarium circinatum – A growing threat to pine plantations and forests worldwide. Australasian Plant Pathology, 37(4), 319. doi:10.1071/ap08036.

    Article  Google Scholar 

  • Yoksan, R., & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering: C, 30(6), 891–897. doi:10.1016/j.msec.2010.04.004.

    Article  CAS  Google Scholar 

  • Zamora, P., Martín, A. B., Rigling, D., Diez, J. J., & Woodward, S. (2012). Diversity of Cryphonectria parasitica in western Spain and identification of hypovirus-infected isolates. Forest Pathology, 42(5), 412–419. doi:10.1111/j.1439-0329.2012.00775.x.

    Article  Google Scholar 

  • Zamora-Ballesteros, C., Haque, M. M. U., Diez, J. J., Martín-García, J., & Balci, Y. (2016). Pathogenicity of Phytophthora alni Complex and P. plurivora in Alnus glutinosa seedlings. Forest Pathology. doi:10.1111/efp.12299.

  • Zeng, D., Luo, X., & Tu, R. (2012). Application of bioactive coatings based on chitosan for soybean seed protection. International Journal of Carbohydrate Chemistry, 2012, 1–5. doi:10.1155/2012/104565.

    Article  Google Scholar 

  • Ziani, K., Fernández-Pan, I., Royo, M., & Maté, J. I. (2009). Antifungal activity of films and solutions based on chitosan against typical seed fungi. Food Hydrocolloids, 23(8), 2309–2314. doi:10.1016/j.foodhyd.2009.06.005.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is based upon work from COST Action FP1406 PINESTRENGTH (Pine pitch canker - strategies for management of Gibberella circinata in greenhouses and forests), supported by COST (European Cooperation in Science and Technology) and project AGL2015-69370-R (MINECO/FEDER) funded by the Spanish Ministerio de Economía y Competitividad and the Fondo Europeo de Desarrollo Regional (FEDER). Calabazanos Forest Health Center - Junta de Castilla y León (Villamuriel de Cerrato, Palencia, Spain) is gratefully acknowledged for supplying the Cryphonectria parasitica, Heterobasidion annosum fungi and the Phytophthora cambivora oomycete. I. Silva Castro would like to gratefully acknowledge the financial support of CONACYT, México, through the PhD Scholarship with ref. no. 329975. Portuguese Foundation for Science and Technology (FCT) supported Jorge Martín-García (Post doc grant - SFRH/BPD/122928/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosody Silva-Castro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Castro, I., Martín-García, J., Diez, J.J. et al. Potential control of forest diseases by solutions of chitosan oligomers, propolis and nanosilver. Eur J Plant Pathol 150, 401–411 (2018). https://doi.org/10.1007/s10658-017-1288-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1288-4

Keywords

Navigation