Skip to main content

Functional analysis of spinach CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 (SoCPR5) in plant immunity

Abstract

Spinach is one of the most nutritious green-leaf vegetables. In the spinach production, diseases cause a significant loss in both yield and quality. Improving disease resistance is one of the major challenges in spinach breeding. Arabidopsis nucleoporin CONSTITUTIVE EXPRESSER OF PATHOGENESIS-RELATED GENES 5 (CPR5) functions as a negative regulator of plant cell death and immunity as cpr5 mutant exhibits spontaneous cell death and heightened immunity. In addition, CPR5 play a role in trichome development as the majority of cpr5 mutant trichomes are branchless whereas wild type trichomes are often three-branched. In the spinach genome, we identified a homolog of Arabidopsis CPR5, referred to as Spinacia oleracea CPR5 (SoCPR5). To investigate the function of SoCPR5, we introduced SoCPR5 into Arabidopsis cpr5 mutant. Our data showed that both spontaneous cell death and heightened immunity were suppressed in the SoCPR5-transgenic cpr5 mutants, verifying that SoCPR5 functions as its Arabidopsis counterpart in plant cell death and immunity. SoCPR5 also fully restored wild type trichome phenotype of the cpr5 mutant. Our study therefore indicates that the function of SoCPR5 is conserved between plant species and SoCPR5 can be applied for genetic manipulation of plant immunity in spinach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

CKI:

CDK inhibitor

CPR5:

CONSTITUTIVE EXPRESSER OF PATHOGENESIS-RELATED GENES 5

ETI :

Effector-triggered immunity

Hpa :

Hyaloperonospora arabidopsidis

PAMP:

Pathogen-associated molecular pattern

Pfs :

Peronospora farinosa f. sp. spinaciae

Psm ES 4326:

Pseudomonas syringae pv. maculicola ES 4326

PTI:

PAMP-triggered immunity

SIM:

Siamese

SMR1:

Siamese-Related 1

SoCPR5:

Spinacia oleracea CPR5

References

  • Anderson, L. K. (2006). CPR5 encodes a novel protein required for endoreduplication and cell expansion in plants. In Biology. Duke University, pp. xviii, 149 leaves.

  • Bao, J. H., Chin, D. P., Fukami, M., Ugaki, M., Nomura, M., & Mii, M. (2009). Agrobacterium-mediated transformation of spinach (Spinacia Oleracea) with bacillus thuringiensis cry1Ac gene for resistance against two common vegetable pests. Plant Biotechnology, 26, 249–254.

    CAS  Article  Google Scholar 

  • Bowling, S. A., Clarke, J. D., Liu, Y. D., Klessig, D. F., & Dong, X. N. (1997). The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. The Plant Cell, 9, 1573–1584.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., & Dong, X. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 88, 57–63.

    CAS  Article  PubMed  Google Scholar 

  • Correll, J. C., Morelock, T. E., Black, M. C., Kolke, S. T., Brandenberger, L. P., & Dalnello, F. J. (1994). Economically important diseases of spinach. Plant Disease, 78, 653–660.

    Article  Google Scholar 

  • Denance, N., Sanchez-Vallet, A., Goffner, D., & Molina, A. (2013). Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, 4, 155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.

    CAS  Article  PubMed  Google Scholar 

  • Earley, K. W., Haag, J. R., Pontes, O., Opper, K., Juehne, T., Song, K., & Pikaard, C. S. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. The Plant Journal, 45, 616–629.

    CAS  Article  PubMed  Google Scholar 

  • Feng, C., Correll, J. C., Kammeijer, K. E., & Koike, S. T. (2014). Identification of new races and deviating strains of the spinach downy mildew pathogen Peronospora Farinosa f. Sp. spinaciae. Plant Disease, 98, 145–152.

    Article  Google Scholar 

  • Gu, Y., Zebell, S. G., Liang, Z., Wang, S., Kang, B. H., & Dong, X. (2016). Nuclear pore Permeabilization is a convergent signaling event in effector-triggered immunity. Cell, 166, 1526–1538.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Irish, B. M., Correll, J. C., Feng, C., Bentley, T., & de Los Reyes, B. G. (2008). Characterization of a resistance locus (Pfs-1) to the spinach downy mildew pathogen (Peronospora Farinosa f. Sp. spinaciae) and development of a molecular marker linked to Pfs-1. Phytopathology, 98, 894–900.

    CAS  Article  PubMed  Google Scholar 

  • Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    CAS  Article  PubMed  Google Scholar 

  • Ma, H., & Wang, S. (2016). Histidine regulates seed oil deposition through abscisic acid biosynthesis and beta-oxidation. Plant Physiology, 172, 848–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, H., Song, T., Wang, T., & Wang, S. (2016). Influence of human p53 on plant development. PloS One, 11, e0162840.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morelock, T. E., & Correll, J. C. (2008). Spinach. In J. Prohens-Tomás & F. Nuez (Eds.), Vegetables I (pp. 189–218). New York: Springer.

    Chapter  Google Scholar 

  • Nelson, B. K., Cai, X., & Nebenfuhr, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal, 51, 1126–1136.

    CAS  Article  PubMed  Google Scholar 

  • Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12, 89–100.

    CAS  Article  PubMed  Google Scholar 

  • Talbot, M. J., & White, R. G. (2013). Methanol fixation of plant tissue for scanning electron microscopy improves preservation of tissue morphology and dimensions. Plant Methods, 9, 36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Gu, Y., Zebell, S. G., Anderson, L. K., Wang, W., Mohan, R., & Dong, X. (2014). A noncanonical role for the CKI-RB-E2F cell-cycle signaling pathway in plant effector-triggered immunity. Cell Host & Microbe, 16, 787–794.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31571254), the Shanghai Municipal Agricultural Commission (201509), the Science and Technology Commission of Shanghai Municipality (16391901000) and the National Natural Science Foundation of China (31601769).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, T., Lou, Y., Xu, C. et al. Functional analysis of spinach CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 (SoCPR5) in plant immunity. Eur J Plant Pathol 150, 515–520 (2018). https://doi.org/10.1007/s10658-017-1286-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1286-6

Keywords

  • Cell death
  • CONSTITUTIVE EXPRESSER OF PATHOGENESIS-RELATED GENES 5
  • Plant immunity
  • Spinacia oleracea L.
  • Trichome