Skip to main content

Histopathology of Dryas octopetala leaves co-infected by Subanguina radicicola and Aphelenchoides sp. and molecular caracterization of the nematodes

Abstract

During a survey, in the Perthshire hills, Scotland, altitude 800–900 m a.s.l., samples of Dryas octopetala leaves showing concomitantly symptoms of galls and discolored spots, were collected. Several nematodes, juveniles and adults, were isolated by dissecting foliar tissues. Two species of nematodes, recovered and identified at morphological and molecular level as Aphelenchoides sp. and Subanguina radicicola, are herein reported. The most significant diagnostic characters for species identification of nematode specimens extracted from Dryas leaf galls fitted well with those previously reported for S. radicicola. Concerning the Aphelenchoides sp., the diagnostic characters were very similar to those reported for A. ritzemabosi.The ITS and the D2-D3 expansion domain analyses confirmed the presence of S. radicicola from galls, while Aphelenchoides specimens from discoloured leaf areas), despite the morphological similarity with A. ritzemabosi, were genetically distinct from A. ritzemabosi based on two genomic regions (LSU and ITS). The 18S rRNA gene (SSU) was only amplified in S. radicicola. Phylogenetic analyses using ITS and LSU sequences placed S. radicicola with other populations of the same species and Aphelenchoides sp. with species of the same genus. The histopathology, caused by both endoparasites in naturally infected leaves, was examined via serial sections mounted on glass slides. Green Dryas leaves infected by Aphelenchoides sp. appeared discolored (yellowish spots), slightly deformed with a population density of four specimens/cm2 per single leaf blade. Dryas octopetala leaves infected by S. radicicola showed an average of three galls/leaf, located randomly, mainly at the upper leaf edge. Dissected galls contained a central cavity with a variable number of adult females (3–6)/gall and males, together with several immature females, juvenile stages and eggs. The present study reports on a new host plant and an undescribed type of sedentary parasitism of the root-gall nematode, S. radicicola on D. octopetala leaves with the concomitant infection of specimens of Aphelenchoides sp.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Brzeski, M. W. (1981). The genera of Anguinidae (Nematoda, Tylenchida). Revue de Nématologie, 4, 23–34.

  3. Chizhov, V. N., & Subbotin, S. A. (1990). Plant parasitic nematodes of subfamily Anguininae (Nematoda, Tylenchida). Morphology, trophic specialization, systematics. Zoologicheskiĭ Zhurnal, 69, 15–16.

  4. Chizhov, V. N., Chumakova, O. A., Subbotin, S. A., & Baldwin, J. G. (2006). Morphological and molecular characterization of foliar nematodes of the genus Aphelenchoides: A. fragariae and A. ritzemabosi (Nematoda: Aphelenchoididae) from the main botanical garden of the Russian Academy of Sciences, Moscow. Russian Journal of Nematology, 14, 179–184.

  5. Christie, J. R. (1980). Recent observations on the strawberry dwarf nematode in Massachusetts. Plant Disease Report, 16, 113–114.

  6. Cobb, N. A. (1926). Nemic diseases of narcissus. Official Records, USDA 5, 3.

  7. De Jesus, D. S., Oliveira, C. M. G., Roberts, D., Blok, V., Neilson, R., Prior, T., Balbino, H. M., MacKenzie, K. M., & de Lima D’Arc Oliveira, R. (2016). Morphological and molecular characterisation of Aphelenchoides besseyi and A. fujianensis (Nematoda: Aphelenchoididae) from rice and forage grass seeds in Brazil. Nematology, 18, 337–356.

    Article  Google Scholar 

  8. De Luca, F., Fanelli, E., Di Vito, M., Reyes, A., & De Giorgi, C. (2004). Comparison of the sequences of the D3 expansion of the 26S ribosomal genes reveals different degrees of heterogeneity in different populations and species of Pratylenchus from the Mediterranean region. European Journal of Plant Pathology, 111, 949–957.

    Article  Google Scholar 

  9. De Luca, F., Reyes, A., Troccoli, A., & Castillo, P. (2011). Molecular variability and phylogenetic relationships among different species and populations of Pratylenchus (Nematoda: Pratylenchidae) as inferred from the analysis of the ITS rDNA. European Journal of Plant Pathology, 130, 415–430.

    Article  Google Scholar 

  10. Duncan, L. W., & Moens, M. (2013). Migratory endoparasitic nematodes. In R. N. Perry & M. Moens (Eds.), Plant Nematology (pp. 144–178). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  11. Esser, R.P. (1986). A water agar en face view technique. Proceedings of the Helminthological Society of Washington, 53, 254-5.

  12. Fanelli, E., Cotroneo, A., Carisio, L., Troccoli, A., Grosso, S., Boero, C., Capriglia, F., & De Luca, F. (2017). Detection and molecular characterization of the rice root-knot nematode Meloidogyne graminicola in Italy. European Journal of Plant Pathology. doi:10.1007/s10658-017-1196-7.

  13. Fischer M., 1894. Über eine Clematis-frankheit. Bericht aus dem Physiolischen Laboratorium des Landwirthschaftlichen, 3, 1–11.

  14. Greeff, R. (1872) Über Nematoden in Wurzelanschwellungen (Gallen) verschiedener Pflanzen. Sitzungsberichte der Gesellschaft zür Beförderung der Gesamten Naturwissenschaften zu Marburg, 11, 172–174.

  15. Hooper, D.J. (1986). Handling, fixing, staining and mounting nematodes. In: Southey, J. (Ed.), Laboratory Methods for Work with Plant and Soil Nematodes, (pp. 59-80) (6th ed.). London: Ministry of Agriculture, fisheries and food: Her Majesty’s stationery office.

  16. Hugall, A., Stanton, J., & Moritz, C. (1999). Reticulate evolution and the origins of ribosomal internal tarnscribed spacer diversity in apomictic Meloidogyne. Molecular Biology and Evolution, 16, 157–164.

    CAS  Article  PubMed  Google Scholar 

  17. Johansen, D. A. (1940). Plant Microtechnique. New York: McGraw-Hill Book Co.

    Google Scholar 

  18. Jones, J. T., Haegeman, A., Danchin, E. G. J., Gaur, H. S., Helder, J., Jones, M. G. K., Kikuchi, T., Manzanilla-Lopez, R., Palomares-Rius, J. E., Wesemael, W. M. L., & Perry, R. N. (2013). Top 10 plant parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961.

    Article  PubMed  Google Scholar 

  19. Joyce, S.A., Reid, A., Driver, F., & Curran, J. (1994). Application of polymerase chain reaction (PCR) methods to the identification of entomopathogenic nematodes. In: Burnell, A.M., Ehlers, R.-U. & Masson, J.-P. (Eds). COST 812 Biotechnology: Genetics of entomopathogenic nematodes bacterium complexes (pp. 178–187). Proceedings of symposium and workshop, St Patrick’s College, Maynooth, County Kildare, Ireland. Luxembourg, European Commission, DGXII.

  20. Kanzaki, N., & Futai, K. (2002). A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within xylophilus group. Nematology, 4, 35–41.

    CAS  Article  Google Scholar 

  21. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA 7: Molecular evolutionary genetics analysis version 7 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.

    CAS  Article  PubMed  Google Scholar 

  22. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). ClustalW and ClustalX version 2. Bioinformatics, 23, 2947–2948.

    CAS  Article  PubMed  Google Scholar 

  23. Löw, F. (1874). Tylenchus millefolii n. sp., eine neue gallenerzeugende Anguillulide. Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien, 24, 17–24.

  24. McCuiston, J. L., Hudson, L. C., Subbotin, S. A., Davis, E. L., & Warfield, C. Y. (2007). Conventional and PCR detection of Aphelenchoides fragariae in diverse ornamental host plant species. Journal of Nematology, 39, 343–355.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nicoll, W. (1935). Vermes. Zoological Record, 72, 105.

  26. Norton, D. C., & Sass, J. E. (1966). Pathological changes in Agropyro smithii induced by Anguina agropyronifloris. Phytopathology, 56, 769–771.

    Google Scholar 

  27. Nunn, G.B. (1992). Nematode molecular evolution. Ph.D. thesis. University of Nottingham, UK.

  28. Paramonov, A. A. (1970). Fundamentals of plant helminthology. In: Taxonomy of nematodes of the superfamily Tylenchoidea, vol. 3 (p. 233). Moscow: Nauka.

    Google Scholar 

  29. Potter, D., Eriksson, T., Evans, R. C., Oh, S., Smedmerk, J. E. E., Morgan, D. R., Kerr, M., Robertson, K. R., Arsenault, M., Dickinson, T. A., & Campbell, C. S. (2007). Phylogeny and classification of Rosaceae. Plant Systematics and Evolution, 266, 5–43.

    Article  Google Scholar 

  30. Powers, T. O., Mullin, P. G., Harris, T. S., Sutton, L. A., & Higgins, R. S. (2005). Incorporating molecular identification of Meloidogyne spp. into a large-scale regional survey. Journal of Nematology, 37, 226–235.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rybarczyk-Mydlowska, K., Mooyman, P., van Megen, H., van den Elsen, S., Vervoort, M., Veenhuizen, P., van Doorn, J., Dees, R., Karssen, G., Bakker, J., & Helder, J. (2012). Small subunit ribosomal DNA-based phylogenetic analysis of foliar nematodes (Aphelenchoides spp.) and their quantitative detection in complex DNA backgrounds. Phytopathology, 102, 1153–1160.

    Article  PubMed  Google Scholar 

  32. Skinner, J. A., Orr, C. C., & Robinson, A. F. (1979). Histopathogenesis of galls induced by Nothanguina phyllobia in Solanum elaeagnifolium. Journal of Nematology, 12, 141–150.

    Google Scholar 

  33. Steiner, G., & Buhrer, E. M. (1932). Miscellaneous notes on nemic diseases. Plant Disease Reporter, 16, 137.

  34. Subbotin, S. A., Krall, E. L., Riley, I. T., Chizhov, V. N., Staelens, A., De Loose, M., & Moens, M. (2004). Evolution of the gall-forming plant parasitic nematodes (Tylenchida: Anguinidae) and their relationships with hosts as inferred from internal transcribed spacer sequences of nuclear ribosomal DNA. Molecular Phylogenetics and Evolution, 30, 226–235.

    CAS  Article  PubMed  Google Scholar 

  35. Subbotin, S. A., Sturhan, D., Chizhov, V. N., Vovlas, N., & Baldwin, J. G. (2006). Phylogenetic analysis of Tylenchida Thorne, 1949 as inferred from D2 and D3 expansion fragments of the 28S rRNA gene sequences. Nematology, 8, 455–474.

    CAS  Article  Google Scholar 

  36. Troccoli, A. (2002). Aspetti pratici e comparativi di alcune metodologie tradizionali applicate all’identificazione dei nematodi da quarantena. Nematologia Mediterranea, 30, 107–110.

    Google Scholar 

  37. Vovlas, N. (1983). Histopathogenesis of galls induced by Subanguina radicicola on Poa annua roots. Plant Disease, 67, 143–144.

    Article  Google Scholar 

  38. Vovlas, N., & Coi, Y. E. (1995). Histopathogenesis of Artemisia asiatica foliar galls induced by Mesoanguina moxae. Afro-Asian Journal of Nematology, 5, 11–13.

    Google Scholar 

  39. Vovlas, N., Minuto, A., Garibaldi, A., Troccoli, A., & Lamberti, F. (2005). Identification and histopathology of the foliar nematode Aphelenchoides ritzemabosi (Nematoda: Aphelenchoididae) on basil in Italy. Nematology, 7, 301–308.

    Article  Google Scholar 

  40. Watson, A. K. (1985). Biology of Subanguina picridis, a biological control agent of Russian knapweed. Journal of Nematology, 18, 149–154.

    Google Scholar 

  41. Yang S-C., et al. (1981). The identification of the pathogen Subanguina radicicola (Grf.). Yunnan Nongye Keji, 1, 24–26.

  42. Zhao, Z. Q., Davies, K. A., Riley, I. T., & Nobbs, J. M. (2014). Laimaphelenchus preissii sp. nov. (Nematoda: Aphelenchina) from native pine Callitris preissii in South Australia. Transactions of the Royal Society of South Australia, 130(1), 10–16.

Download references

Acknowledgements

Authors thank Mr. Vincenzo Radicci for technical assistance in sample processing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesca De Luca.

Ethics declarations

Conflict of interest

All the authors certify that 1) do not have any actual or potential conflict of interest, 2) the study described is original and has not been published previously, and is not under consideration for publication elsewhere, 3) all prevailing local, national and international regulations and conventions, and normal scientific ethical practices, have been respected. We also certify that all authors have reviewed the manuscript and approved the final version of manuscript before submission.

Research involving human participants and/or animals

Specific permits were required for the described fieldwork studies by the co-author Keith Bland (British Ordinance Survey Grid reference NO128780). The samples from wild plants were collected by the co-author Keith Bland and sent to The Institute of Sustainable Plant Protection (Bari, Italy) for investigations.

Informed consent

All the authors certify that the work carried out in this research followed the principles of ethical and professional conduct. No funders were involved in this study. The study was designed by all authors for scientific research only, as well as data collection and analysis, decision to publish, or preparation of the manuscript. The author’s institutions were informed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fanelli, E., Troccoli, A., Vovlas, N. et al. Histopathology of Dryas octopetala leaves co-infected by Subanguina radicicola and Aphelenchoides sp. and molecular caracterization of the nematodes. Eur J Plant Pathol 150, 287–296 (2018). https://doi.org/10.1007/s10658-017-1275-9

Download citation

Keywords

  • Concomitant infection
  • D2-D3
  • Its
  • Leaf galls
  • Histopathology
  • Mountain avens
  • New host
  • Phylogeny