Skip to main content
Log in

Isolation and characterization of Zhihengliuella aestuarii B18 suppressing clubroot on Brassica juncea var. tumida Tsen

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Mustard clubroot, caused by Plasmodiophora brassicae, is a serious disease that affects Brassica juncea var. tumida Tsen, a mustard plant that is the raw material for a traditional fermented food manufactured in the Chongqing Municipality, People’s Republic of China. To find antagonistic bacteria for P. brassicae, 124 bacteria were obtained from the rhizosphere soil of B. juncea var. tumida grown in Fuling, Chongqing. Isolates were preliminarily chosen by evaluating the inhibition rate of the P. brassicae resting spore germination. The biocontrol effects of three antagonistic bacteria against clubroot on B. juncea var. tumida were evaluated in a greenhouse experiment. B18 showed the highest control efficiency, at 63.4% in the greenhouse test. In a field trial, B18 was also effective in controlling clubroot, but only at a 49.7% efficiency rate. According to 16S rDNA sequence analysis, strain B18 had a 100% sequence similarity with type strain Zhihengliuella aestuarii DY66T (EU939716). Based on morphological, cultural, physiological and biochemical characteristics, the DNA G + C content, polar lipids, fatty acids, cell wall analysis, as well as DNA–DNA hybridization, strain B18 was identified as Z. aestuarii B18. Thus, the isolate B18 might have a potential biocontrol application for clubroot. We report for the first time that Z. aestuarii B18 can control clubroot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arie, T., Kobayashi, Y., Okada, G., Kono, Y., & Yamaguchi, I. (1998). Control of soilborne clubroot disease of cruciferous plants by epoxydon from Phoma Glomerata. Plant Pathology, 47, 743–748.

    Article  Google Scholar 

  • Baik, K. S., Lim, C. H., Park, S. C., Choe, H. N., Kim, H. J., Kim, D., Lee, K. H., & Seong, C. N. (2011). Zhihengliuella aestuarii sp. nov., isolated from tidal flat sediment. International Journal of Systematic and Evolutionary Microbiology, 61(7), 1671–1676.

    Article  CAS  Google Scholar 

  • Cheah LH, Page BBC (1997) Trichoderma spp. For potential biocontrol of clubroot of vegetable brassicas. Proc 50th N Z Plant Protection Conf 150–153.

  • Cordovez, V., Carrion, V. J., Etalo, D. W., Mumm, R., Zhu, H., van Wezel, G. P., & Raaijmakers, J. M. (2015). Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Frontiers in Microbiology, 6, 1081.

    Article  Google Scholar 

  • De Ley, J. (1970). Reexamination of the association between melting point, buoyant density and chemical base composition of deoxyribonucleic acid. Journal of Bacteriology, 101, 738–754.

    PubMed  PubMed Central  Google Scholar 

  • De Ley, J., Cattoir, H., & Reynaerts, A. (1970). The quantitative measurement of DNA hybridization from renaturation rates. European Journal of Biochemistry, 12, 133–142.

    Article  Google Scholar 

  • Dixon, G. R. (2009). Plasmodiophora brassicae In its environment. Plant Growth Regulation, 28, 212–228.

    Article  CAS  Google Scholar 

  • Donald, C., & Porter, I. (2009). Integrated control of clubroot. Plant Growth Regulation, 28, 289.

    Article  CAS  Google Scholar 

  • El-Tarabily, K. A., & Sivasithamparam, K. (2006). Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology & Biochemistry, 38, 1505–1520.

    Article  CAS  Google Scholar 

  • Faffian, R., & Strelkov, S. E. (2009). Detection and measurement of Plasmodiophora brassicae. Journal of Plant Growth Regulation, 28, 282–288.

    Article  Google Scholar 

  • Guo, S. Y., Mao, Z. C., Wu, Y. X., Hao, K., He, P. F., & He, Y. Q. (2013). Genome sequencing of Bacillus Subtilis strain XF-1 with high efficiency in the suppression of Plasmodiophora brassicae. Genome Announcements, 1(2), 1–2.

    Google Scholar 

  • Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4–10.

    Article  CAS  Google Scholar 

  • Jaschke, D., Dugassa-Gobena, D., Karlovsky, P., Vidal, S., & Ludwig-Muller, J. (2010). Suppression of clubroot (Plasmodiophora brassicae) development in Arabidopsis thaliana by the endophytic fungus Acremonium alternatum. Plant Pathology, 59, 100–111.

    Article  Google Scholar 

  • Khaled, A. E.-T., & Krishnapillai, S. (2006). Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biology & Biochemistry, 38, 1505–1520.

    Article  Google Scholar 

  • Kuginuki, Y., Yoshikawa, H., & Hirai, M. (1999). Variation in virulence of Plasmodiophora brassicae in Japan tested with clubroot-resistant cultivars of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Eur J Plant Pathol, 105, 327.

    Article  Google Scholar 

  • Lee, S. O., Choi, G. J., Choi, Y. H., Jang, K. S., Park, D. J., Kim, C. J., & Kim, J. C. (2008). Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. Journal of Microbiology and Biotechnology, 18(11), 1741–1746.

    CAS  PubMed  Google Scholar 

  • Ludwig-Muller, J., & Schuller, A. (2008). What can we learn from clubroots: Alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae. European Journal of Plant Pathology, 121, 291–302.

    Article  Google Scholar 

  • Marmur, J., & Doty, P. (1962). Determination Of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol, 5, 109–118.

    Article  CAS  Google Scholar 

  • Mesbah, M., Premachandran, U., & Whitman, W. B. (1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. International Journal of Systematic Bacteriology, 39, 159–167.

    Article  CAS  Google Scholar 

  • Michelsen, C. F., Watrous, J., Glaring, M. A., Kersten, R., Koyama, N., Dorrestein, P. C., & Stougaard, P. (2015). Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil. MBio, 6, e00079–e00015. doi:10.1128/mBio.00079-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Naiki, T., Dixon, G. R., & Ikegami, H. (1987). Quantitative estimation of spore germination of Plasmodiophora brassicae. Transactions of the British Mycological Society, 89, 569–609.

    Article  Google Scholar 

  • Narisawa, K., Shimura, M., Usuki, F., Fukuhara, S., & Hashiba, T. (2005). Effects of pathogen density, soil moisture, and soil pH on biological control of clubroot in Chinese cabbage by Heteroconium chaetospira. Plant Disease, 89, 285–290.

    Article  CAS  Google Scholar 

  • Rashid, A., Ahmed, H. U., Xiao, Q., Hwang, S. F., & Strelkov, S. E. (2013). Effects of root exudates and pH on Plasmodiophora brassicae resting spore germination and infection of canola (Brassica napus L.) root hairs. Crop Protection, 48, 16–23.

    Article  CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101. Newark, DE: Microbial ID.

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  • Wang, J., Huang, Y., Lin, S., Liu, F., Song, Q., Peng, Y. L., & Zhao, L. (2012). A strain of Streptomyces griseoruber isolated from rhizospheric soil of Chinese cabbage as antagonist to Plasmodiophora brassicae. Annales de Microbiologie, 62, 247–253.

    Article  CAS  Google Scholar 

  • Xiao, C., & Guo, X. (2002). Biological Charateristic of Plasmodiophora brassicae. Mycosystema, 21(4), 597–603.

    Google Scholar 

  • Zhou, L., Li, M., Yang, J., Wei, L., & Ji, G. (2014). Draft genome sequence of antagonistic agent Lysobacter antibioticus 13-6. Genome Announcements, 2(5), e00566–e00514.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Chongqing Science and Technology Commission (grant number: cstc 2013jcyjA80038) and the Special Fund for Post-Doctoral Research Project of Chongqing (grant number: Xm2015046)

Author information

Authors and Affiliations

Authors

Contributions

CYZ and YLL conceived and designed the study. YLL, DWD, ZQG, HJ, XYW, YFY and CJW collected samples and performed the experiment. YLL carried out the data analysis. YLL and CYZ contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Daiwen Dong or Changyong Zhou.

Ethics declarations

Competing interests

The authors declare that they have no potential conflicts of interest.

Informed consent

All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Dong, D., Gou, Z. et al. Isolation and characterization of Zhihengliuella aestuarii B18 suppressing clubroot on Brassica juncea var. tumida Tsen. Eur J Plant Pathol 150, 213–222 (2018). https://doi.org/10.1007/s10658-017-1269-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1269-7

Keywords

Navigation