Skip to main content

Advertisement

Log in

Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Tan spot caused by Pyrenophora tritici-repentis is the main foliar diseases of wheat in Brazil. The effect of silicon (Si) on the components of resistance of a susceptible (Fundacep Horizonte) and a moderately resistant (Quartzo) wheat cultivar was studied in a controlled environment. Silicon was supplied as calcium silicate in the soil 30 days before sowing. At the booting stage, a conidial suspension of the fungus was sprayed onto the flag leaves of potted plants, which were incubated under moist conditions for 48 h. Afterwards, inoculated leaves were assessed for: incubation period (IP), infection efficiency (IE), area under lesion size curve (AULSC), lesion size (LS), severity (SEV) and area under severity curve (AUSC). Foliar Si concentrations were quantified at the end of the evaluations. Si supply to plants increased leaf Si concentration in 233% for Fundacep Horizonte (from 4.8 to 16.0 g kg−1 of dry matter) and 211% for Quartzo (from 5.3 to 16.5 g kg−1 of dry matter). In the Si + treatments, IP was longer by 24 and 17 h, IE declined by 53.5 and 65.5%, LS (at 264 h after inoculation) by 4.6 mm (from 9.5 to 4.9 mm) and 5.9 mm (from 8.2 to 2.3 mm), and SEV by 53% (from 54.4 to 18.8%) and 88% (from 47.7 to 5.5%) respectively, for the Fundacep Horizonte and Quartzo cultivars. The Si x cultivar interaction was not significant for AULSC and AUSC, and these variables were reduced by 55.8 and 80.8%, respectively, in plants supplied with Si. In conclusion, Si enhanced the resistance of wheat plants to tan spot development by affecting several resistance components, regardless of the resistance level of the cultivar. However, the greatest reduction in tan spot development by Si supply was observed when using a moderately resistant cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrie, R. A., Pandelova, L., & Ciuffetti, L. A. (2007). A combination of phenotypic and genotypic characterization strengthens Pyrenophora tritici-repentis race identification. Phytopathology, 97(6), 694–701.

    Article  CAS  Google Scholar 

  • Andrie, R. M., Schoch, C. L., Hedges, R., Spatafora, J. W., & Ciuffetti, L. M. (2008). Homologs of ToxB, a host-selective toxin gene from Pyrenophora tritici-repentis, are present in the genome of sister-species Pyrenophora bromi and other members of the Ascomycota. Fungal Genetics and Biology, 45(3), 363–377.

    Article  CAS  Google Scholar 

  • Bankina, B., Gaile, Z., Balodis, O., Bimsteine, G., Katamadze, M., Kreita, D., Paura, L., & Priekule, I. (2014). Harmful winter wheat diseases and possibilities for their integrated control in Latvia. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 64(7), 615–622.

    Google Scholar 

  • Bélanger, R. R., Benhamou, N., & Menzies, J. G. (2003). Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. Sp tritici). Phytopathology, 93(4), 402–412.

    Article  Google Scholar 

  • Berger, R. D., Bergamin Filho, A., & Amorim, L. (1997). Lesion expansion as an epidemic component. Phytopathology, 87(10), 1005–1013.

    Article  CAS  Google Scholar 

  • Bockus, W. W., & Claassen, M. M. (1992). Effects of crop-rotation and residue management-practices on severity of tan spot of winter-wheat. Plant Disease, 76(6), 633–636.

    Article  Google Scholar 

  • Bouktila, D., Khalfallah, Y., Habachi-Houimli, Y., Mezghani-Khemakhem, M., Makni, M., & Makni, H. (2014). Full-genome identification and characterization of NBS-encoding disease resistance genes in wheat. Molecular Genetics and Genomics, 290(1), 257–271.

    Article  Google Scholar 

  • Cacique, I. S., Domiciano, G. P., Rodrigues, F. A., & Ribeiro do Vale, F. X. (2012). Silicon and manganese on rice resistance to blast. Bragantia, 71(2), 239–244.

    Article  CAS  Google Scholar 

  • Cai, K., Gao, D., Luo, S., Zeng, R., Yang, J., & Zhu, X. (2008). Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiologia Plantarum, 134(2), 324–333.

    Article  CAS  Google Scholar 

  • Carmona, M. A., Ferrazini, M., & Barreto, D. E. (2006). Tan spot of wheat caused by Drechslera tritici-repentis: detection, transmission, and control in wheat seed. Cereal Research Communications, 34(2–3), 1043–1049.

    Article  Google Scholar 

  • Dallagnol, L. J., Rodrigues, F. A., Mielli, M. V. B., Ma, J. F., & Datnoff, L. E. (2009). Defective active silicon uptake affects some components of rice resistance to brown spot. Phytopathology, 99(1), 116–121.

    Article  CAS  Google Scholar 

  • Dallagnol, L. J., Rodrigues, F. A., Da Matta, F. M., Mielli, M. V. B., & Pereira, S. C. (2011). Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice-Bipolaris oryzae interaction. Phytopathology, 101(1), 92–104.

    Article  Google Scholar 

  • Dallagnol, L. J., Rodrigues, F. A., Tanaka, F. A. O., Amorim, L., & Camargo, L. E. A. (2012). Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathology, 61(2), 323–330.

    Article  CAS  Google Scholar 

  • Domiciano, G. P., Rodrigues, F. A., Vale, F. X. R., Xavier Filha, M. S., Moreira, W. R., Lage Andrade, C. C., & Pereira, S. C. (2010). Wheat resistance to spot blotch potentiated by silicon. Journal of Phytopathology, 158(5), 334–343.

    Article  CAS  Google Scholar 

  • Domiciano, G. P., Rodrigues, F. A., Guerra, A. M. N., & Vale, F. X. R. (2013). Infection process of Bipolaris sorokiniana on wheat leaves is affected by silicon. Tropical Plant Pathology, 38(3), 258–263.

    Article  Google Scholar 

  • Epstein, E. (2009). Silicon: Its manifold roles in plants. Annals of Applied Biology, 155(2), 155–160.

    Article  CAS  Google Scholar 

  • Gremillion, S. K., Culbreath, A. K., Gorbet, D. W., Mullinix Jr., B. G., Pittman, R. N., Stevenson, K. L., Todd, J. W., Escobar, R. E., & Condori, M. M. (2011). Field evaluations of leaf spot resistance and yield in peanut genotypes in the United States and Bolivia. Plant Disease, 95(3), 263–268.

    Article  CAS  Google Scholar 

  • Güevel, M. H., Menzies, J. G., & Bélanger, R. R. (2007). Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. European Journal of Plant Pathology, 119(4), 429–436.

    Article  Google Scholar 

  • Hayasaka, T., Fujii, H., & Ishiguro, K. (2008). The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology, 98(9), 1038–1044.

    Article  CAS  Google Scholar 

  • Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96(6), 1027–1046.

    Article  CAS  Google Scholar 

  • Keane, P. J., & dan Kerr, A. (1997). Factors affecting disease development. In J. F. Brown & H. J. Ogle (Eds.), Plant pathogen and plant disease (pp. 287–298). Armidale: Rockvale Publications.

    Google Scholar 

  • Kim, S. G., Kim, K. W., Park, E. W., & Choi, D. (2002). Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology, 92(10), 1095–1103.

    Article  Google Scholar 

  • Korndörfer, G., Pereira, H., Nolla, A. (2004). Análise de silício: solo, planta e fertilizante, 2nd edn. Uberlândia: Universidade Federal de Uberlândia.

  • Large, E. C. (1954). Growth stages in cereals - illustration of the feekes scale. Plant Pathology, 3(4), 128–129.

    Article  Google Scholar 

  • Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1), 11–18.

    Article  CAS  Google Scholar 

  • Mulbah, Q. S., Shimelis, H. A., & Laing, M. D. (2015). Combining ability and gene action of three components of horizontal resistance against rice blast. Euphytica, 206(3), 805–814.

    Article  CAS  Google Scholar 

  • Néri, A. (2013). Reunião da comissão brasileira de pesquisa de trigo e triticale: informações técnicas para trigo e triticale – safra 2013. Londrina: Instituto Agronômico do Paraná.

  • Parlevliet, J. E. (1979). Components of resistance that reduce the rate of epidemic development. Annual Review of Phytopathology, 17, 203–222.

    Article  Google Scholar 

  • Rafi, M. M., & Epstein, E. (1999). Silicon absorption by wheat (Triticum aestivum L). Plant and Soil, 211(2), 223–230.

    Article  CAS  Google Scholar 

  • Ranzi, C., & Forcelini, C. A. (2013). Curative sprays of fungicides and their effect on lesion expansion of the wheat tan spot. Ciencia Rural, 43(9), 1576–1581.

    Article  CAS  Google Scholar 

  • Rees, R. G., & Platz, G. J. (1980). The epidemiology of yellow spot of wheat in southern Queensland. Australian Journal of Agricultural Research, 31(2), 259–267.

    Article  Google Scholar 

  • Rees, R. G., & Platz, G. J. (1983). Effects of yellow spot on wheat - comparison of epidemics at different stages of crop development. Australian Journal of Agricultural Research, 34(1), 39–46.

  • Reis, E. M., & Casa, R. T. (1996). Doenças do trigo VI - mancha amarela da folha. São Paulo: Bayer S.A.

  • Reis, E. M., & Casa, R. T. (2007). Doenças dos cereais de inverno – diagnose, epidemiologia e controle. Lages: Graphel.

  • Resende, R. S., Rodrigues, F. A., Soares, J. M., & Casela, C. R. (2009). Influence of silicon on some components of resistance to anthracnose in susceptible and resistant sorghum lines. European Journal of Plant Pathology, 124(3), 533–541.

    Article  CAS  Google Scholar 

  • Rezende, D. C., Rodrigues, F. A., Carre-Missio, V., Schurt, D. A., Kawamura, I. K., & Korndorfer, G. H. (2009). Effect of root and foliar applications of silicon on brown spot development in rice. Australasian Plant Pathology, 38(1), 67–73.

    Article  CAS  Google Scholar 

  • Rodrigues, F. A., Vale, F. X. R., Datnoff, L. E., Prabhu, A. S., & Korndorfer, G. H. (2003). Effect of rice growth stages and silicon on sheath blight development. Phytopathology, 93(3), 256–261.

    Article  Google Scholar 

  • Rodrigues, F. A., Jurick, W. M., Datnoff, L. E., Jones, J. B., & Rollins, J. A. (2005). Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 66(4), 144–159.

    Article  CAS  Google Scholar 

  • Rodrigues, F. A., Dallagnol, L. J., Duarte, H. S. S., & Datnoff, L. E. (2015a). Silicon control of foliar diseases in monocots and dicots. In F. A. Rodrigues & L. E. Datnoff (Eds.), Silicon and plant diseases (pp. 67–108). New York: Springer.

    Chapter  Google Scholar 

  • Rodrigues, F. A., Resende, R. S., Dallagnol, L. J., & Datnoff, L. E. (2015b). Silicon potentiates host defense mechanisms against infection by plant pathogens. In F. A. Rodrigues & L. E. Datnoff (Eds.), Silicon and plant diseases (pp. 109–138). New York: Springer.

    Chapter  Google Scholar 

  • Ronis, A., Semaskiene, R., Dabkevicius, Z., & Liatukas, Z. (2009). Influence of leaf diseases on grain yield and yield components in winter wheat. Journal of Plant Protection Research, 49(2), 151–157.

    Article  Google Scholar 

  • Seebold, K. W., Kucharek, T. A., Datnoff, L. E., Correa-Victoria, F. J., & Marchetti, M. A. (2001). The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology, 91(1), 63–69.

    Article  CAS  Google Scholar 

  • Shaner, G., & Finney, R. E. (1977). Effect of nitrogen-fertilization on expression of slow-mildewing resistance in knox wheat. Phytopathology, 67(8), 1051–1056.

    Article  CAS  Google Scholar 

  • Takahashi, E., Ma, J. F., & Miyake, Y. (1990). The possibility of silicon as an essential element for higher plants. Comments on Agricultural and Food Chemistry, 2(2), 99–122.

    CAS  Google Scholar 

  • Vale, F. X. R., Fernandes Filho, E. I., Liberato, J. R. (2003). A software plant disease severity assessment. In: 8th international congress of plant pathology. Anais. Christchurch, New Zealand. p. 105.

  • Van der Plank, J. E. (1963). Plant diseases: epidemics and control. New York: Academic Press.

  • Xavier Filha, M. S., Rodrigues, F. A., Domiciano, G. P., Oliveira, H. V., Silveira, P. R., & Moreira, W. R. (2011). Wheat resistance to leaf blast mediated by silicon. Australasian Plant Pathology, 40(1), 28–38.

    Article  Google Scholar 

Download references

Acknowledgments

P. C. Pazdiora and K. R. Dorneles received scholarships from Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES). L. J. Dallagnol and E. M. Del Ponte are supported by fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). This research was supported by a grant from CNPq (476852/2012-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro José Dallagnol.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

The manuscript was only submitted to EJPP and not previously published. All authors contributed and agreed to submission to EJPP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazdiora, P.C., da Rosa Dorneles, K., Forcelini, C.A. et al. Silicon suppresses tan spot development on wheat infected by Pyrenophora tritici-repentis . Eur J Plant Pathol 150, 49–56 (2018). https://doi.org/10.1007/s10658-017-1251-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1251-4

Keywords

Navigation