Skip to main content

Advertisement

Log in

Pseudomonas syringae pv. tomato DC3000 growth in multiple gene knockouts predicts interactions among hormonal, biotic and abiotic stress responses

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Among other environmental factors, phytopathogens have key roles in limiting global crop production. While an in-depth understanding of plant-pathogen interactions is therefore necessary to develop sustainable crop protection strategies, the genetic basis of plant-pathogen interactions is poorly understood. In this study, we tested the growth and resistance of an important phytopathogen, Pseudomonas syringae pv tomato DC3000 (Pst DC3000), in 80 gene knockouts, identified previously through genome-wide association mapping of global Arabidopsis thaliana populations. Amongst these, most of the genes are previously known to regulate multiple functions in plants including cellular mechanisms, growth, reproduction, hormonal signaling, and tolerance to both biotic and abiotic stresses (extreme temperature, drought, salinity, pollutants, and nutrient stresses, etc.). The Pst DC3000 demonstrated two distinct growth patterns in all gene knockouts, showing maximum growth after 4 or 7 days of inoculation (DOI). Mostly, the wild-type (Col-0) demonstrated higher phytopathogen growth than almost all gene knockouts after 4 or 7 DOI. The differential abundance of Pst DC3000 in the multiple gene knockouts reveals a number of new genes important for plant defense. Meanwhile, our results and a review of previous literature suggest interaction of plant defense with plant growth, reproduction, hormonal and abiotic stress tolerance. Thus in future studies, a mechanistic understanding of the genetic, ecological and physiological basis of plant-pathogen interactions, and pleiotropic interactions may prove instrumental in developing sustainable plant protection practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aluri, S., & Büttner, M. (2007). Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proceedings of the National Academy of Sciences, 104, 2537–2542.

  • Ding, Y., Ndamukong, I., Zhao, Y., Xia, Y., Riethoven, J. J., Jones, D. R., ... & Avramova, Z. (2012). Divergent functions of the myotubularin (MTM) homologs AtMTM1 and AtMTM2 in Arabidopsis thaliana: evolution of the plant MTM family. The Plant Journal, 70, 866–878.

  • Feike, D., Seung, D., Graf, A., Bischof, S., Ellick, T., Coiro, M., et al. (2016). The starch granule-associated protein EARLY STARVATION1 (ESV1) is required for the control of starch degradation in Arabidopsis thaliana leaves. The Plant Cell, 28, 1472–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finiti, I., Leyva, M. O., López-Cruz, J., Calderan Rodrigues, B., Vicedo, B., Angulo, C., et al. (2013). Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant–pathogen interactions. Plant Biology, 15, 819–831.

    Article  CAS  PubMed  Google Scholar 

  • Fulda, M., Schnurr, J., Abbadi, A., Heinz, E., & Browse, J. (2004). Peroxisomal acyl-coa synthetase activity is essential for seedling development in Arabidopsis thaliana. The Plant Cell, 16, 394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galway, M. E., Eng, R. C., Schiefelbein, J. W., & Wasteneys, G. O. (2011). Root hair-specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post-rupture resumption of mutant root hair growth. Planta, 233, 985–999.

    Article  CAS  PubMed  Google Scholar 

  • González-Lamothe, R., Oirdi, M. E., Brisson, N., & Bouarab, K. (2012). The conjugated auxin indole-3-acetic acid–aspartic acid promotes plant disease development. The Plant Cell, 24, 762–777.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horton, M. W., Hancock, A. M., Huang, Y. S., Toomajian, C., Atwell, S., Auton, A., et al. (2012). Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nature Genetics, 44, 212–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain, S., Siddique, T., Saleem, M., Arshad, M., & Khalid, A. (2009). Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Advances in Agronomy, 102, 159–200.

    Article  CAS  Google Scholar 

  • Ji, H., Peng, Y., Meckes, N., Allen, S., Stewart, C. N., & Traw, M. B. (2014). ATP-dependent binding cassette transporter G family member 16 increases plant tolerance to abscisic acid and assists in basal resistance against Pseudomonas syringae DC3000. Plant Physiology, 166, 879–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, M. G., da Cunha, L., McFall, A. J., Belkhadir, Y., DebRoy, S., Dangl, J. L., & Mackey, D. (2005). Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell, 121, 749–759.

    Article  CAS  PubMed  Google Scholar 

  • Kover, P. X., & Cheverud, J. (2007). The genetic basis of quantitative variation in susceptibility of Arabidopsis thaliana to Pseudomonas syringae (Pst DC3000): Evidence for a new genetic factor of large effect. Heredity, 94, 507–517.

    Article  Google Scholar 

  • Kover, P. X., Wolf, J. B., Kunkel, B. N., & Cheverud, J. (2005). Genetic architecture of Arabidopsis thaliana response to infection by Pseudomonas syringae. New Phytologist, 174, 172–181.

    Article  Google Scholar 

  • Melotto, M., Underwood, W., & He, S. Y. (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annual Review of Phytopathology, 46, 101–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikiciński, A., Sobiczewski, P., Puławska, J., & Maciorowski, R. (2016). Control of fire blight (Erwinia amylovora) by a novel strain 49M of Pseudomonas graminis from the phyllosphere of apple (Malus spp.) European Journal of Plant Pathology, 145, 265–276.

    Article  Google Scholar 

  • Mills, R. F., Doherty, M. L., López-Marqués, R. L., Weimar, T., Dupree, P., Palmgren, M. G., et al. (2008). ECA3, a Golgi-localized P2A-type ATPase, plays a crucial role in manganese nutrition in Arabidopsis. Plant Physiology, 146, 116–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noutoshi, Y., Okazaki, M., Kida, T., Nishina, Y., Morishita, Y., Ogawa, T., et al. (2012). Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis. The Plant Cell, 24, 3795–3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oerke, E.-C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144, 31–43.

    Article  Google Scholar 

  • Pitorre, D., Llauro, C., Jobet, E., Guilleminot, J., Brizard, J.-P., Delseny, M., & Lasserre, E. (2010). RLK7, a leucine-rich repeat receptor-like kinase, is required for proper germination speed and tolerance to oxidative stress in Arabidopsis thaliana. Planta, 232, 1339–1353.

    Article  CAS  PubMed  Google Scholar 

  • Rouse, D. I., Nordheim, E. V., Hirano, S. S., & Upper, C. D. (1985). A model relating the probability of foliar disease incidence to the population frequencies of bacterial plant pathogens. Phytopathology, 75, 505–509.

    Article  Google Scholar 

  • Saleem, M., Law, A. D., & Moe, L. A. (2016). Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microbial Ecology, 71, 469–472.

    Article  CAS  PubMed  Google Scholar 

  • Saleem, M., Meckes, N., Pervaiz, Z. H., & Traw, M. B. (2017). Microbial interactions in the phyllosphere increase plant performance under herbivore biotic stress. Frontiers in Microbiology, 8, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleem, M., & Moe, L. A. (2014). Multitrophic microbial interactions for eco- and agro-biotechnological processes: Theory and practice. Trends in Biotechnology, 32, 529–537.

    Article  CAS  PubMed  Google Scholar 

  • Sobiczewski, P., Iakimova, E. T., Mikiciński, A., Węgrzynowicz-Lesiak, E., & Dyki, B. (2016). Nectrotrophic behaviour of Erwinia amylovora in apple and tobacco leaf tissue. Plant Pathology. doi:10.1111/ppa.12631.

    Google Scholar 

  • Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M., & Bergelson, J. (2003). Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature, 423, 74–77.

    Article  CAS  PubMed  Google Scholar 

  • Traw, M. B., & Bergelson, J. (2010). Plant immune system incompatibility and the distribution of enemies in natural hybrid zones. Current Opinion in Plant Biology, 13, 466–471.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Tang, W., Zhu, C., & Perry, S. E. (2002). A chromatin immunoprecipitation (ChIP) approach to isolate genes regulated by AGL15, a MADS domain protein that preferentially accumulates in embryos. The Plant Journal, 32, 831–843.

  • Wang, Y.-F., Zhang, A., Ren, H.-M., Tan, Y.-Q., Qi, G.-N., Yao, F.-Y., et al. (2016). S-type anion channels SLAC1 and SLAH3 function as essential negative regulators of inward K+ channels and stomatal opening in Arabidopsis. The Plant Cell, 28, 949–965.

    Article  PubMed Central  Google Scholar 

  • Wild, M., & Achard, P. (2013). The DELLA protein RGL3 positively contributes to jasmonate/ethylene defense responses. Plant Signaling & Behavior, 8, e23891.

    Article  Google Scholar 

  • Won, S.-K., Lee, Y.-J., Lee, H.-Y., Heo, Y.-K., Cho, M., & Cho, H.-T. (2009). Cis-element- and transcriptome-based screening of root hair-specific genes and their functional characterization in Arabidopsis. Plant Physiology, 150, 1459–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, X.-F., & He, S. Y. (2013). Pseudomonas syringae pv. Tomato DC3000: A model pathogen for probing disease susceptibility and hormone signaling in plants. Annual Review of Phytopathology, 51, 473–498.

    Article  CAS  PubMed  Google Scholar 

  • Yao, X., Feng, H., Yu, Y., Dong, A., & Shen, W.-H. (2013). SDG2-mediated H3K4 methylation is required for proper Arabidopsis root growth and development. PloS One, 8, e56537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Züst, T., Joseph, B., Shimizu, K. K., Kliebenstein, D. J., & Turnbull, L. A. (2011). Using knockout mutants to reveal the growth costs of defensive traits. Proceedings of the Royal Society B: Biological Sciences, 278, 2598–2603.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are highly thankful to the reviewers for their input that significantly improved the quality and readability of this manuscript. This research was supported by US National Science Foundation Grant #1050138 (MBT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Saleem or Milton Brian Traw.

Electronic supplementary material

ESM 1

(DOCX 49.8 kb)

ESM 2

(DOCX 38.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, M., Ji, H., Amirullah, A. et al. Pseudomonas syringae pv. tomato DC3000 growth in multiple gene knockouts predicts interactions among hormonal, biotic and abiotic stress responses. Eur J Plant Pathol 149, 779–786 (2017). https://doi.org/10.1007/s10658-017-1223-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1223-8

Keywords

Navigation