European Journal of Plant Pathology

, Volume 149, Issue 3, pp 669–682 | Cite as

Resistance of wheat pathogen Zymoseptoria tritici to DMI and QoI fungicides in the Nordic-Baltic region - a status

  • Thies Marten Heick
  • Annemarie Fejer Justesen
  • Lise Nistrup Jørgensen
Article

Abstract

Septoria tritici blotch (STB) caused by the ascomycete Zymoseptoria tritici (Z. tritici) is currently the most prevalent foliar disease in wheat in the Nordic-Baltic region. Fungicide availability in this region differs greatly and is generally more limited than in other European regions. Monitoring of fungicide sensitivity is an essential tool to survey changes in fungal populations in order to react and be able to adapt recommendations for fungicide use. In this study the authors give an overview of the current situation of 14α-demethylation inhibitor (DMI) and quinone outside inhibitor (QoI) sensitivity of Z. tritici from Scandinavia and the Baltic countries. A total of 985 isolates from the Nordic-Baltic region were investigated for EC50 of DMI epoxiconazole and prothioconazole. Fungicide sensitivity remains at a high level with values ranging from 0.07 to 0.48 mg L−1 for epoxiconazole and 1.17 to 9.47 mg L−1 for prothioconazole. Point mutation I381V in the DMI target gene CYP51 was dominant throughout the region, but mutations D134G, V136A/C and S524T were also detected in the population in 2014. Screening for inserts in the CYP51 promoter region revealed that a ~ 1000 bp insert is predominant in the entire region. Only a single isolate was found in Denmark, harbouring the 120 bp insert, known to reduce fungicide sensitivity. Two Danish isolates which had elevated resistance levels were associated with an enhanced efflux. Significant differences were found across the area for the presence of G143A, conferring QoI resistance. As there is only limited access to results from this area, these findings can serve as reference for future fungicide sensitivity investigations and for evaluation of changes in the Northern European Z. tritici population.

Keywords

14α-demethylation inhibitors Epoxiconazole Fungicide resistance MDR Mycosphaerella graminicola Overexpression Prothioconazole Quinone outside inhibitors Septoria leaf blotch 

References

  1. Anonymous (2009). Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides (Text with EEA relevance). http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0071:0086:en:PDF: European Parliament and the Council of the European Union.
  2. Anonymous (2016b). https://www.middeldatabasen.dk/positiveList.asp. Accessed 11.11.2015.
  3. Anonymous (2016c). www.jordbruksverket.se. Accessed 11.11.2015.
  4. Anonymous (2016d). www.luke.fi. Accessed 11.11.2015.
  5. Anonymous (2016e). www.pma.agri.ee. Accessed 11.11.2015.
  6. Anonymous (2016f). www.vaad.gov.lv. Accessed 11.11.2015.
  7. Bearchell, S. J., Fraaije, B. A., Shaw, M. W., & Fitt, B. D. L. (2005). Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proceedings of the National Academy of Sciences of the United States of America, 102(15), 5438–5442. doi:10.1073/pnas.0501596102.CrossRefPubMedPubMedCentralGoogle Scholar
  8. van den Bosch, F., Oliver, R., van den Berg, F., & Paveley, N. (2014). Governing principles can guide fungicide-resistance management tactics. In N. K. VanAlfen (Ed.), Annual Review of Phytopathology, Vol 52 (Vol. 52, pp. 175-195, annual Review of Phytopathology).Google Scholar
  9. Brown, J. K. M., Chartrain, L., Lasserre-Zuber, P., & Saintenac, C. (2015). Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genetics and Biology, 79, 33–41. doi:10.1016/j.fgb.2015.04.017.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brunner, P. C., Stefanato, F. L., & McDonald, B. A. (2008). Evolution of the CYP51 gene in Mycosphaerella Graminicola: Evidence for intragenic recombination and selective replacement. Molecular Plant Pathology, 9(3), 305–316. doi:10.1111/j.1364-3703.2007.00464.x.CrossRefPubMedGoogle Scholar
  11. Buitrago, C., Frey, R., Wullschleger, J., & Sierotzki, H. (2014). An update on the genetic changes in the CYP51 gene of Mycosphaerella Graminicola and their relationship to DMI fungicide sensitivity. In H. W. Dehne, B. Deising, U. Fraaije, D. Gisi, D. Hermann, A. Mehl, et al. (Eds.), Modern fungicides and antifungal compounds VII (pp. 103–110). Braunschweig: DPG Spectrum Phytomedizin.Google Scholar
  12. Chassot, C., Hugelshofer, U., Sierotzki, H., & Gisi, U. (2008). Sensitivity of CYP51 genotypes to DMI fungicides in Mycosphaerella Graminicola. In H. W. Dehne, H. B. Deising, U. Gisi, K. H. Kuck, P. E. Russell, G. Stammler, & H. Lyr (Eds.), Modern fungicides and antifungal compounds V (pp. 129–136). DPG Spectrum Phytomedizin: Braunschweig.Google Scholar
  13. Cools, H. J., & Fraaije, B. A. (2013). Update on mechanisms of azole resistance in Mycosphaerella Graminicola and implications for future control. Pest Management Science, 69(2), 150–155. doi:10.1002/ps.3348.CrossRefPubMedGoogle Scholar
  14. Cools, H. J., Parker, J. E., Kelly, D. E., Lucas, J. A., Fraaije, B. A., & Kelly, S. L. (2010). Heterologous expression of mutated Eburicol 14 alpha-demethylase (CYP51) proteins of Mycosphaerella Graminicola to assess effects on azole fungicide sensitivity and intrinsic protein function. Applied and Environmental Microbiology, 76(9), 2866–2872. doi:10.1128/aem.02158-09.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cools, H. J., Mullins, J. G. L., Fraaije, B. A., Parker, J. E., Kelly, D. E., Lucas, J. A., et al. (2011). Impact of recently emerged sterol 14 alpha-demethylase (CYP51) variants of Mycosphaerella Graminicola on azole fungicide sensitivity. Applied and Environmental Microbiology, 77(11), 3830–3837. doi:10.1128/aem.00027-11.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cools, H. J., Bayon, C., Atkins, S., Lucas, J. A., & Fraaije, B. A. (2012). Overexpression of the sterol 14 alpha-demethylase gene (MgCYP51) in Mycosphaerella Graminicola isolates confers a novel azole fungicide sensitivity phenotype. Pest Management Science, 68(7), 1034–1040. doi:10.1002/ps.3263.CrossRefPubMedGoogle Scholar
  17. Dooley, H., Shaw, M. W., Mehenni-Ciz, J., Spink, J., & Kildea, S. (2016a). Detection of Zymoseptoria tritici SDHI-insensitive field isolates carrying the SdhC-H152R and SdhD-R47W substitutions. Pest Management Science, 72(12), 2203–2207. doi:10.1002/ps.4269.CrossRefPubMedGoogle Scholar
  18. Dooley, H., Shaw, M. W., Spink, J., & Kildea, S. (2016b). Effect of azole fungicide mixtures, alternations and dose on azole sensitivity in the wheat pathogen Zymoseptoria tritici. Plant Pathology, 65(1), 124–136. doi:10.1111/ppa.12395.CrossRefGoogle Scholar
  19. Estep, L. K., Zala, M., Anderson, N. P., Sackett, K. E., Flowers, M., McDonald, B. A., et al. (2013). First report of resistance to QoI fungicides in North American populations of Zymoseptoria tritici, causal agent of Septoria Tritici blotch of wheat. Plant Disease, 97(11), 1511–1511. doi:10.1094/PDIS-05-13-0486-PDN.CrossRefGoogle Scholar
  20. Estep, L. K., Torriani, S. F. F., Zala, M., Anderson, N. P., Flowers, M. D., McDonald, B. A., et al. (2015). Emergence and early evolution of fungicide resistance in North American populations of Zymoseptoria tritici. Plant Pathology, 64(4), 961–971. doi:10.1111/ppa.12314.CrossRefGoogle Scholar
  21. Eyal, Z., Scharen, A. L., Prescott, J. M., & van Ginkel, M. (1987). The septoria diseases of wheat: Concepts and methods of disease management. Mexico: CIMMYT.Google Scholar
  22. Fraaije, B. A., Cools, H. J., Fountaine, J., Lovell, D. J., Motteram, J., West, J. S., et al. (2005). Role of ascospores in further spread of QoI-resistant cytochrome b alleles (G143A) in field populations of Mycosphaerella Graminicola. Phytopathology, 95(8), 933–941. doi:10.1094/phyto-95-0933.CrossRefPubMedGoogle Scholar
  23. Fraaije, B. A., Bayon, C., Atkins, S., Cools, H. J., Lucas, J. A., & Fraaije, M. W. (2012). Risk assessment studies on succinate dehydrogenase inhibitors, the new weapons in the battle to control Septoria leaf blotch in wheat. Molecular Plant Pathology, 13(3), 263–275. doi:10.1111/j.1364-3703.2011.00746.x.CrossRefPubMedGoogle Scholar
  24. Gladders, P., Paveley, N. D., Barrie, I. A., Hardwick, N. V., Hims, M. J., Langton, S., et al. (2001). Agronomic and meteorological factors affecting the severity of leaf blotch caused by Mycosphaerella Graminicola in commercial wheat crops in England. Annals of Applied Biology, 138(3), 301–311. doi:10.1111/j.1744-7348.2001.tb00115.x.CrossRefGoogle Scholar
  25. Grasso, V., Palermo, S., Sierotzki, H., Garibaldi, A., & Gisi, U. (2006). Cytochrome b gene structure and consequences tor resistance to Qo inhibitor fungicides in plant pathogens. Pest Management Science, 62(6), 465–472. doi:10.1002/ps.1236.CrossRefPubMedGoogle Scholar
  26. Hayes, L. E., Zala, M., Anderson, N. P., Sackett, K. E., Flowers, M., McDonald, B. A., et al. (2013). First report of resistance to QoI fungicides in North American populations of Zymoseptoria tritici, causal agent of Septoria Tritici blotch of wheat. Plant Disease, 97(11), 1511–1511. doi:10.1094/pdis-05-13-0486-pdn.Google Scholar
  27. Hobbelen, P. H. F., Paveley, N. D., & van den Bosch, F. (2011). Delaying selection for fungicide insensitivity by mixing fungicides at a low and high risk of resistance development: A modeling analysis. Phytopathology, 101(10), 1224–1233. doi:10.1094/phyto-10-10-0290.CrossRefPubMedGoogle Scholar
  28. Hobbelen, P. H. F., Paveley, N. D., & van den Bosch, F. (2014). The emergence of resistance to fungicides. PloS One, 9(3), e91910. doi:10.1371/journal.pone.0091910.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jørgensen, L. N., Hovmøller, M. S., Hansen, J. G., Lassen, P., Clark, B., Bayles, R., et al. (2014). IPM strategies and their dilemmas including an introduction to www.Eurowheat.Org. Journal of Integrative Agriculture, 13(2), 265–281. doi:10.1016/s2095-3119(13)60646-2.CrossRefGoogle Scholar
  30. Jørgensen, L. N., Kristjansen, H. S., Kirkegaard, S., & Almskou-Dahlgaard, A. (2015a). Disease control in cereals in L. N. Jørgensen, B. J. Nielsen, P. K. Jensen, P. Kudsk, S. K. Mathiassen, P. Hartvig, et al. (Eds.), Applied Crop Protection 2014 (pp. 19-65). Aarhus: Aarhus Universitet - DCA - Nationalt Center for Fødevarer og Jordbrug.Google Scholar
  31. Jørgensen, L. N., Wieczorek, T. M., Christiansen, H.-B., & Olsen, B. B. (2015b). Fungicide resistance-related investigations. In L. N. Jørgensen, B. J. Nielsen, P. K. Jensen, P. Kudsk, S. K. Mathiassen, P. Hartvig, et al. (Eds.), Applied crop protection 2014 (pp. 83–87). Aarhus: Aarhus Universitet - DCA - Nationalt Center for Fødevarer og Jordbrug.Google Scholar
  32. Kildea, S., Mehenni-Ciz, J., Spink, J., & O’Sullivan, E. (2014). Changes in the frequency of Irish Mycophaerella graminicola CYP51 variants 2006–2011. In H. W. Dehne, H. B. Deising, B. Fraaije, U. Gisi, D. Hermann, A. Mehl, et al. (Eds.), 17th international Reinhardsbrunn symposium (pp. 143–144). DPG Spectrum Phytomedizin: Braunschweig, Germany.Google Scholar
  33. Kudsk, P. (2010). Norbarag (Nordic Baltic resistance action group) – A new resistance action group covering Denmark, Estonia, Finland, Latvia, Lithuania, Norway and Sweden. Outlooks Pest Manag, 21(5), 223–224. doi:10.1564/21oct06.CrossRefGoogle Scholar
  34. Lehmann, E. L. (2006). Nonparametrics Statistical Methods Based on Ranks (1ed.). New York: Springer Verlag.Google Scholar
  35. Leroux, P., & Walker, A. S. (2011). Multiple mechanisms account for resistance to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerella Graminicola. [article]. Pest Management Science, 67(1), 44–59. doi:10.1002/ps.2028.CrossRefPubMedGoogle Scholar
  36. Leroux, P., Walker, A. S., Albertini, C., & Gredt, M. (2006). Resistance to fungicides in French populations of Septoria Tritici, the causal agent of wheat leaf blotch. In Bryson R.J., Burnett F.J., Foster V., Fraaije B.A., & K. R. (Eds.), Aspects of Applied Biology. Fungicide Resistance: Are we winning the battle but losing the war?, Edinburgh, 2006 (Vol. 78, pp. 153-162). Warwick: Warwick HRIGoogle Scholar
  37. Leroux, P., Albertini, C., Gautier, A., Gredt, M., & Walker, A. S. (2007). Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerelia graminicola. Pest Management Science, 63(7), 688–698. doi:10.1002/ps.1390.CrossRefPubMedGoogle Scholar
  38. Luo, C. X., & Schnabel, G. (2008). The cytochrome p450 lanosterol 14 alpha-demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilinia fructicola field isolates from Georgia. Applied and Environmental Microbiology, 74(2), 359–366. doi:10.1128/aem.02159-07.CrossRefPubMedGoogle Scholar
  39. Nikou, D., Malandrakis, A., Konstantakaki, M., Vontas, J., Markoglou, A., & Ziogas, B. (2009). Molecular characterization and detection of overexpressed C-14 alpha-demethylase-based DMI resistance in Cercospora beticola field isolates. Pesticide Biochemistry and Physiology, 95(1), 18–27. doi:10.1016/j.pestbp.2009.04.014.CrossRefGoogle Scholar
  40. O'Driscoll, A., Kildea, S., Doohan, F., Spink, J., & Mullins, E. (2014). The wheat-Septoria conflict: A new front opening up? Trends in Plant Science, 19(9), 602–610. doi:10.1016/j.tplants.2014.04.011.CrossRefPubMedGoogle Scholar
  41. Omrane, S., Sghyer, H., Audeon, C., Lanen, C., Duplaix, C., Walker, A. S., et al. (2015). Fungicide efflux and the MgMFS1 transporter contribute to the multidrug resistance phenotype in Zymoseptoria tritici field isolates. Environmental Microbiology, 17(8), 2805–2823. doi:10.1111/1462-2920.12781.CrossRefPubMedGoogle Scholar
  42. Parker, J. E., Warrilow, A. G. S., Price, C. L., Mullins, J. G. L., Kelly, D. E., & Kelly, S. L. (2014). Resistance to antifungals that target CYP51. Journal of Chemical Biology, 7(4), 143–161. doi:10.1007/s12154-014-0121-1.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Paveley, N. D., Lockley, D., Vaughan, T. B., Thomas, J., & Schmidt, K. (2000). Predicting effective fungicide doses through observation of leaf emergence. Plant Pathology, 49(6), 748–766. doi:10.1046/j.1365-3059.2000.00518.x.CrossRefGoogle Scholar
  44. Pietravalle, S., Shaw, M. W., Parker, S. R., & van den Bosch, F. (2003). Modeling of relationships between weather and septoria tritici epidemics on winter wheat: A critical approach. Phytopathology, 93, 1329–1339.CrossRefPubMedGoogle Scholar
  45. Price, C. L., Parker, J. E., Warrilow, A. G. S., Kelly, D. E., & Kelly, S. L. (2015). Azole fungicides-understanding resistance mechanisms in agricultural fungal pathogens. Pest Management Science, 71(8), 1054–1058. doi:10.1002/ps.4029.CrossRefPubMedGoogle Scholar
  46. Schnabel, G., & Jones, A. L. (2001). The 14α-Demethylasse(CYP51A1) Gene is overexpressed in Venturia inaequalis strains resistant to Myclobutanil. Phytopathology, 91(1), 102–110. doi:10.1094/PHYTO.2001.91.1.102.CrossRefPubMedGoogle Scholar
  47. Sierotzki, H., & Scalliet, G. (2013). A Review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology, 103(9), 880–887. doi:10.1094/phyto-01-13-0009-rvw.CrossRefPubMedGoogle Scholar
  48. Stammler, G., & Semar, M. (2011). Sensitivity of Mycosphaerella Graminicola (anamorph: Septoria Tritici) to DMI fungicides across Europe and impact on field performance. EPPO Bull, 48(2), 149–155. doi:10.1111/j.1365-2338.2011.02454.x.CrossRefGoogle Scholar
  49. Stammler, G., Carstensen, M., Koch, A., Semar, M., Strobel, D., & Schlehuber, S. (2008). Frequency of different CYP51-haplotypes of Mycosphaerella Graminicola and their impact on epoxiconazole-sensitivity and -field efficacy. Crop Protection, 27(11), 1448–1456. doi:10.1016/j.cropro.2008.07.007.CrossRefGoogle Scholar
  50. Stewart, T. M., Perry, A. J., & Evans, M. J. (2014). Resistance of Zymoseptoria tritici to azoxystrobin andepoxiconazole in the lower North Island of New Zealand. N. Z. Plant Prot, 67, 304–312.Google Scholar
  51. Torriani, S. F. F., Brunner, P. C., McDonald, B. A., & Sierotzki, H. (2009). QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella Graminicola. Pest Management Science, 65(2), 155–162. doi:10.1002/ps.1662.CrossRefPubMedGoogle Scholar
  52. Torriani, S. F. F., Melichar, J. P. E., Mills, C., Pain, N., Sierotzki, H., & Courbot, M. (2015). Zymoseptoria tritici: A major threat to wheat production, integrated approaches to control. Fungal Genetics and Biology, 79, 8–12. doi:10.1016/j.fgb.2015.04.010.CrossRefPubMedGoogle Scholar
  53. Wieczorek, T. M., Berg, G., Semaškienė, R., Mehl, A., Sierotzki, H., Stammler, G., et al. (2015). Impact of DMI and SDHI fungicides on disease control and CYP51 mutations in populations of Zymoseptoria tritici from northern Europe. European Journal of Plant Pathology, 143(4), 861–871. doi:10.1007/s10658-015-0737-1.CrossRefGoogle Scholar
  54. Wieczorek, T. M., Jørgensen, L. N., Christiansen, H.-B., & Olsen, B. B. (2016). Fungicide resistance-related investigations. In L. N. Jørgensen, B. J. Nielsen, P. K. Jensen, P. Hartvig, T. M. Wieczorek, & C. Kaiser (Eds.), Applied crop protection 2015 (Vol. 74, pp. 81–88). Tjele: DCA - Nationalt Center for Fødevarer og Jordbrug.Google Scholar
  55. Zhan, J., & McDonald, B. A. (2004). The interaction among evolutionary forces in the pathogenic fungus Mycosphaerella Graminicola. Fungal Genetics and Biology, 41(6), 590–599. doi:10.1016/j.fgb.2004.01.006.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • Thies Marten Heick
    • 1
  • Annemarie Fejer Justesen
    • 1
  • Lise Nistrup Jørgensen
    • 1
  1. 1.Department of AgroecologyAarhus UniversitySlagelseDenmark

Personalised recommendations