Skip to main content

Characterization and detection of a novel idaeovirus infecting blackcurrant

Abstract

A novel virus was discovered in a blackcurrant accession (Ribes nigrum L.) at the USDA genebank in Oregon, USA. The genome consists of two positive-sense, single-stranded RNAs with the first encoding a 197 kDa multifunctional protein with methyl transferase, helicase and RNA-dependent RNA polymerase enzymatic motifs. The second molecule encodes two putative proteins; the 39 kDa movement and 30 kDa coat proteins. Both RNAs have conserved sequences and structures at the 5′ and 3′ termini. The genome organization, sequence and phylogenetic analyses indicate that the virus is a putative new member of the genus Idaeovirus, as it consistently groups with privet leaf blotch-associated virus and raspberry bushy dwarf virus. A duplex RT-PCR assay was developed for rapid detection of both genomic RNAs simultaneously. The work presented in this communication will assure the health status of blackcurrant plants in mother blocks, nurseries and production fields alike.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Converse, R.H. (1987). Virus and virus-like diseases of Ribes (Gooseberry and black and red currant. In: Virus diseases of small fruits; Converse, R.H., (Ed.), Agriculture Handbook No. 631, US Department of Agriculture, Washington D.C., USA, pp. 127–166.

  2. Derrick, K. S., Beretta, M. J., & Barthe, G. A. (2006). Detection of an idaeovirus in citrus with implication as to the cause of citrus blight. Proceedings of Florida State Horticultural Society, 119, 69–72.

    Google Scholar 

  3. Gergerich, R. C., Welliver, R., Gettys, S., Osterbauer, N. K., Kamenidou, S., Martin, R. R., Golino, D., Eastwell, K., Fuchs, M., Vidalakis, G., & Tzanetakis, I. E. (2015). Safeguarding fruit crops in the age of agricultural globalization. Plant Disease, 99, 176–187.

    Article  Google Scholar 

  4. Hall, T. A. (1999). BioEdit, a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  5. Ho, T., & Tzanetakis, I. E. (2014). Developing a virus detection and discovery pipeline using next generation sequencing. Virology, 471-473, 54–60.

    CAS  Article  PubMed  Google Scholar 

  6. Ho, T., Martin, R. R., & Tzanetakis, I. E. (2015a). Next-generation sequencing of elite berry germplasm and data analysis using a bioinformatics pipeline for virus detection and discovery. In C. Lacomme (Ed.), Plant Pathology: Techniques and Protocols (Methods in Molecular Biology), 1302 (pp. 301–313). New York: Springer.

    Chapter  Google Scholar 

  7. Ho, T., Postman, J., Martin, R.R., & Tzanetakis, I.E. (2015b). Discovery, characterization and detection of five new virus species in Ribes. Proceedings of 23 rd international conference on virus and other graft transmissible diseases of fruit crops, p. 45

  8. James, D., & Phelan, J. (2016). Complete genome sequence of a strain of Actinidia virus X detected in Ribes nigrum cv. Baldwin showing unusual symptoms. Archives of Virology, 161, 507–511.

    CAS  PubMed  Google Scholar 

  9. MacFarlane, S. A., & McGavin, W. J. (2009). Genome activation by raspberry bushy dwarf virus coat protein. Journal of General Virology, 90, 747–753.

    CAS  Article  PubMed  Google Scholar 

  10. Martin, R. R., & Tzanetakis, I. E. (2013). High risk strawberry viruses by region in the United States and Canada: Implications for certification, nurseries and fruit production. Plant Disease, 97, 1358–1362.

    CAS  Article  Google Scholar 

  11. Martin, R. R., MacFarlane, S., Sabanadzovic, S., Quito-Avila, D. F., Poudel, B., & Tzanetakis, I. E. (2013). Viruses and virus diseases of Rubus. Plant Disease, 97, 168–182.

    Article  Google Scholar 

  12. Martin, R. R., Constable, F., & Tzanetakis, I. E. (2016). Quarantine regulations and the impact of modern detection methods. Annual Review of Phytopathology, 54, 189–205.

    CAS  Article  PubMed  Google Scholar 

  13. Mitchell, C., Brennan, R. M., Cross, J. V., & Johnson, S. N. (2011). Arthropod pests of currant and gooseberry crops in the U.K.: Their biology, management and future prospects. Agricultural and Forest Entomology, 13, 221–237.

    Article  Google Scholar 

  14. Natsuaki, T., Mayo, M. A., Jolly, C. A. & Murant, A. F. (1991), Nucleotide sequence of raspberry bJournal of General Virologyushy dwarf virus RNA-2: A bicistronic component of a bipartite genome. , 72, 2183–2189.

  15. Navarro, B., Loconsole, G., Giampetruzzi, A., Aboughanem-Sabanadzovic, N., Ragozzino, A., Ragozzino, E., & Di Serio, F. (2016). Identification and characterization of privet leaf blotch-associated virus, a novel idaeovirus. Molecular Plant Pathology. Online ISSN: 1364–3703 B.P. and John Wiley & Sons Ltd doi:10.1111/mpp.12450

  16. Petrzik, K., Koloniuk, I., Přibylová, J., & Špak, J. (2016a). Complete genome sequence of currant latent virus (genus Cheravirus, family Secoviridae). Archives of Virology, 161, 491–493.

    CAS  Article  PubMed  Google Scholar 

  17. Petrzik, K., Přibylová, J., Koloniuk, I., & Špak, J. (2016b). Molecular characterization of a novel capillovirus from red currant. Archives of Virology, 161, 1083–1086.

    CAS  Article  PubMed  Google Scholar 

  18. Postman, J., Hummer, K., Stover, E., Krueger, R., Forsline, P., Grauke, L.J., Zee, Ayala-Silva, T., & Irish, B., (2006). Fruit and nut Genebanks in the US National Plant Germplasm System. Hortscience, 41, 1188–1194.

  19. Poudel, B., Wintermantel, W. M., Cortez, A. A., Ho, T., Khadgi, A., & Tzanetakis, I. E. (2013). Epidemiology of blackberry yellow vein associated virus. Plant Disease, 97, 1352–1357.

    CAS  Article  Google Scholar 

  20. Quito-Avila, D. F., Ibarra, M. A., Alvarez, R., Peralta, E. L., & Martin, R. R. (2014). A raspberry bushy dwarf virus isolate from Ecuadorean Rubus glaucus contains an additional RNA that is a rearrangement of RNA-2. Archives of Virology, 159, 2519–2521.

    CAS  Article  PubMed  Google Scholar 

  21. Scott, S. W. (2001). Bromoviridaee and allies. Wiley online library, John Wiley & Sons, Ltd. doi:10.1038/npg.els.0000745

  22. Susi, P. (2004). Black currant reversion virus, a mite-transmitted nepovirus. Molecular Plant Pathology, 5, 167–173.

    CAS  Article  PubMed  Google Scholar 

  23. Terry, L. (2014). Health-promoting properties of fruit and vegetables, CABI, UK p. 432.

  24. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. USDA-NPGS (2016). GRIN-global. USDA National Plant Germplasm System https://npgsweb.ars-grin.gov/gringlobal/search.aspx (accessed 12/2016).

  26. Wheeler, D. L., Church, D. M., Federhen, S., Lash, A. E., Madden, T. L., Pontius, J. U., Schuler, G. D., Schriml, L. M., Sequeira, E., Tatusova, T. A., & Wagner, L. (2003). Database resources of the National Center for biotechnology. Nucleic Acids Research, 31, 28–33.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Ziegler, A., Natsuaki, T., Mayo, M. A., Jolly, C. A., & Murant, A. F. (1992). The nucleotide sequence of RNA-1 of raspberry bushy dwarf virus. Journal of General Virology, 73, 3213–3218.

    CAS  Article  PubMed  Google Scholar 

  28. Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406–3415.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of USDA awards 14-8130-0420-CA and 14-8130-0392-CA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ioannis E. Tzanetakis.

Additional information

While this paper was accepted with revisions and awaiting the final review by the handling editor, the article ’Complete genome sequence and analysis of blackcurrant leaf chlorosis associated virus, a new member of the genus Idaeovirus’ by James and Phelan was published online as an Online First Article in Archives of Virology. After pairwise comparisons we have verified that the two viruses are isolates of the same species.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thekke-Veetil, T., Ho, T., Postman, J.D. et al. Characterization and detection of a novel idaeovirus infecting blackcurrant. Eur J Plant Pathol 149, 751–757 (2017). https://doi.org/10.1007/s10658-017-1211-z

Download citation

Keywords

  • Idaeovirus
  • Blackcurrant
  • BCIV
  • Large scale sequencing
  • Characterization
  • Detection