Skip to main content

Occurence of sclerotinia stem rot of fenugreek caused by Sclerotinia trifoliorum and S. sclerotiorum in Tunisia

Abstract

Fenugreek is an annual leguminous crop grown for hay and grains in Tunisia. It is also considered a valuable rotation crop with cereals. Sclerotinia rot was observed in production fields since 2010. The survey conducted in 2013 revealed that the incidence of diseased plants varied between 5 and 20%. The identification of isolates of Sclerotinia obtained from fenugreek plants with symptoms of stem rot was determined using morphological and molecular criteria. The size, shape and abundance of sclerotia in potato dextrose agar (PDA) cultures were used to classify isolates as S. sclerotiorum or S. trifoliorum. A comparison of colony diameter on PDA after 24, 48 and 72 h at 25 °C, showed that one isolate grew faster (36 mm/day) than the other 10 isolates (14.8 mm/day). There was a significant difference in sclerotial size between the fast and the slow growing isolates, but there was no significant difference in the number of sclerotia produced after 3 weeks on PDA. Two of the slow growing isolates exhibited ascospore dimorphism, whereas the fast growing isolate did not. PCR amplification with the primer pair ITS5/ITS4 produced a fragment of 560 base pairs from the fast growing isolate and 1000 base pairs from all of the slow growing isolates. The ITS sequences of the fast growing isolate had 100% homology with S. sclerotiorum, whereas those of the slow growing isolates had 100% homology with S. trifoliorum. Isolates of both species were pathogenic on fenugreek seedlings in the greenhouse assay and there was no significant difference in the percentage of dead plants two weeks after inoculation between the two species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Acharya, S. N., Thomas, J. E., & Basu, S. K. (2008). Fenugreek, an alternative crop for semiarid regions of North America. Crop Science, 48, 841–853.

    CAS  Article  Google Scholar 

  • Aissa, A., Manolaraki, F., Pardo, E., Znaïdi, I. A., Ben Salem, H., Kraiem, & Hoste, H. (2013). In vitro anthelmintic activity of some Mediterranean plants against Haemonchus contortus infective stage. Options Méditerranéennes, 107, 183–187.

    Google Scholar 

  • Baturo-Ciesniewska, A., Groves, C. L., Albrecht, K. A., Grau, C. R., Willis, D. K., & Smith, D. L. (2016). Molecular identification of Sclerotinia trifoliorum and Sclerotinia sclerotiorum isolates from the United States and Poland. Plant Disease. doi:10.1094/PDIS-06-16-0896-RE.

    Google Scholar 

  • Boland, G. J. (1997). Index of plant hosts of Sclerotinia minor. Canadian Journal of Plant Pathology, 19, 272–280.

    Article  Google Scholar 

  • Boland, G. J., & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16, 93–108.

    Article  Google Scholar 

  • Christias, C., & Lockwood, J. L. (1973). Conservation of mycelia constituents in four sclerotium-forming fungi in nutrient derived conditions. Phytopathology, 63, 602–605.

    CAS  Article  Google Scholar 

  • Duke, J. A., Reed, C. F., & Weder, P. (1981). Trigonella foenum-graecum L. In J. A. Duke (Ed.), Handbook of legumes of world economic importance. New York: Plenum Press.

    Chapter  Google Scholar 

  • Ekins, M. G. (2000). Genetic diversity in Sclerotinia species. Queensland, Australia, University of Queensland PhD Thesis.

  • Ekins, M. G., Aitken, E. A. B., & Goulter, K. C. (2005). Identification of Sclerotinia species. Australasian Plant Pathology, 34, 549–555.

    Article  Google Scholar 

  • Hao, J. J., Subbarao, K. V., & Duniway, J. M. (2003). Germination of Sclerotinia minor and S. sclerotiorum sclerotia under various soil moisture and temperature combinations. Phytopathology, 93, 443–450.

    CAS  Article  PubMed  Google Scholar 

  • Haouala, R., Hawala, S., El-Ayeb, A., Khanfir, R., & Boughanmi, N. (2008). Aqueous and organic extracts of Trigonella foenum-graecum L. inhibit the mycelia growth of fungi. Journal of Environmental Sciences (China), 20, 1453–1457.

  • Held, V., & Haenseler, C. M. (1953). Cross inoculation with New Jersey isolates of Sclerotinia sclerotiorum, S. minor, and S. trifoliorum. Plant Disease Reporter, 37, 515–517.

    Google Scholar 

  • Hfaiedh, N., Dhibi, S., Mbarki, S., Murat, J. C., & Elfeki, A. (2014). Beneficial effects of fenugreek seeds (Trigonella foenum graecum L) added in the diet of diabetic rats. Journal of Advances in Chemistry, 8, 1556–1565.

    Google Scholar 

  • Holst-Jensen, A., Vaage, M., Schumacher, T., & Johansen, S. (1999). Structural characteristics and possible horizontal transfer of group I introns between closely related plant pathogenic fungi. Molecular Biology and Evolution, 16, 114–126.

    CAS  Article  PubMed  Google Scholar 

  • Keville, K. (1994). Herbs: an illustrated encyclopedia. NY: Michael Friedman Publishing Group, Inc..

    Google Scholar 

  • Kim, W. G., & Cho, W. D. (2003). Occurrence of sclerotinia rot in Solanaceous crops caused by Sclerotinia spp. Microbiology, 31, 113–118.

    Google Scholar 

  • Kohn, L. M. (1979). Delimitation of the economically important plant pathogenic Sclerotinia species. Phytopathology, 69, 881–886.

    Article  Google Scholar 

  • Kohn, L. M., Petsche, D. M., Bailey, S. R., Novak, L. A., & Anderson, J. B. (1988). Restriction fragment length polymorphisms in nuclear and mitochondrial DNA of sclerotinia species. Phytopathology, 78, 1047–1051.

    Article  Google Scholar 

  • McCormick, K., Norton, R., & Eagles, H. A. (2006). Fenugreek has a role in south-eastern Australian farming systems. In proceedings “groundbreaking stuff” 13th annual agronomy conference, 10-14 September 2006. Perth, Australia, pp 639.

  • Mehrafarin, A., Rezazadeh, S. H., Naghdi Badi, H., Noormohammadi, G. H., Zand, E., & Qaderi, A. (2011). A review on biology, cultivation and biotechnology of fenugreek (Trigonella foenum-graecum L.) as a valuable medicinal plant and multipurpose. Journal of Medicinal Plants, 10, 6–24.

    CAS  Google Scholar 

  • Melzer, M. S., Smith, E. A., & Boland, G. J. (1997). Index of plant hosts of Sclerotinia minor. Canadian Journal of Plant Pathology, 19, 272–280.

  • Möller, E. M., Bahnweg, G., Sandermann, H., & Geiger, H. H. (1992). A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Research, 20, 6115–6116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Njambere, E. N., Chen, W., Frate, C., Wu, B. M., Temple, S. R., & Muehlbauer, F. J. (2008). Stem and crown rot of chickpea in California caused by Sclerotinia trifoliorum. Plant Disease, 92, 917–922.

  • Omezzine, F., Daami-Remadi, M., Ladhari, A., & Haouala, R. (2014). Variation in phytochemical content and antifungal activity of Trigonella foenum-graecum L. with plant developmental stage and ploidy level. South African Journal of Botany, 92, 120–125.

    CAS  Article  Google Scholar 

  • Petersen, G. R., Russo, G. M., & Van Etten, J. L. (1982). Identification of major proteins in sclerotia of Sclerotinia minor and Sclerotinia trifoliorum. Experimental Mycology, 6, 268–273.

    CAS  Article  Google Scholar 

  • Petri, L. (1934). Review of Phytopathological records noted in 1933. In review of applied mycology, volume 13. Commonwealth Mycological Institute, Kew, Surrey, UK.

  • Powers, K. S., Steadman, J. R., Higgins, B. S., & Powers, T. O. (2001). Intraspecific variation within North American Sclerotinia trifoliorum isolates characterized by nuclear small subunit rDNA introns. In Proceedings of the 11th Internatioanl Sclerotinia Workshop, 8-12 July 2001, Central science laboratory, York, UK, pp 95–96.

  • Pratt, R. G. (1992). Sclerotinia. In L. L. Singleton, J. D. Mihail, & C. M. Rush (Ed.). Methods for research on soilborne phytopathogenic fungi. St Paul APS Press.

  • Pratt, R. G., & Rowe, D. E. (1995). Comparative pathogenicity of isolates of Sclerotinia trifoliorum and S. sclerotiorum on alfalfa cultivars. Plant Disease, 79, 474–477.

    Article  Google Scholar 

  • Rekik, I., & Bergaoui, R. (2016). Influence du fenugrec (Trigonella fænum græcum L.) sur la production laitière des lapines et la croissance des lapereaux avant sevrage. Journal of New Sciences, 30, 1709–1718.

    Google Scholar 

  • Saada, N., El Mahi, A., Sanaa, M., Siribel, A. A., & Ben Jeddi, F. (2014). The effect of organic composts on the chemical characteristics of fenugreek (Trigonellafoenum greacum) from Sudan and Tunisia. Journal of New Sciences, 11, 1–8.

    Google Scholar 

  • Singh, D., Nandal, T. R., & Thakur, H. L. (2007). Fenugreek - a new host of Sclerotinia sclerotiorum. Research on Crops, 8, 794.

    Google Scholar 

  • Smith, E. A., & Boland, G. J. (1989). A reliable method for production of apothecia of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 11, 45–48.

    CAS  Article  Google Scholar 

  • Tariq, V. N., Gutteridge, C. S., & Jeffries, P. (1985). Comparative studies of cultural and biochemical characteristics used for distinguishing species within Sclerotinia. Transactions of the British Mycological Society, 84, 81–397.

    Article  Google Scholar 

  • Uhm, J. Y., & Fujii, H. (1983). Ascospore dimorphism in Sclerotinia trifoliorum and cultural characters of strains from different-sized spores. Phytopathology, 73, 565–569.

    Article  Google Scholar 

  • Vleugels, T., Baert, J., & van Bockstaele, E. (2013). Morphological and pathogenic characterization of genetically diverse Sclerotinia isolates from European red clover crops (Trifolium pratense L.). Journal of Phytopathology, 161, 254–262.

    CAS  Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–332). New York: Academic Press.

    Google Scholar 

  • Willetts, H. J., & Wong, J. A. L. (1980). The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. The Botanical Review, 46, 100–165.

    Article  Google Scholar 

Download references

Acknowledgements

The first author is grateful to the Fulbright Foundation for the award of a Research Fellowship (July 2015- October 2015) at Washington State University. The first author would like also to thank Dr. Weidong Chen (Washington State University) for his support and valuable comments. The last author acknowledges the support from the Crawford Fund of Australia. The authors thank Sonia Deriouch from National Institute of Agricultural Research of Tunisia for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gargouri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gargouri, S., Berraies, S., Gharbi, M.S. et al. Occurence of sclerotinia stem rot of fenugreek caused by Sclerotinia trifoliorum and S. sclerotiorum in Tunisia. Eur J Plant Pathol 149, 587–597 (2017). https://doi.org/10.1007/s10658-017-1208-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1208-7

Keywords

  • Trigonella foenum-graecum
  • Sclerotinia trifoliorum
  • Sclerotinia sclerotiorum
  • Carpogenic germination
  • Sclerotia