GC-MS metabolite profiling of Phytophthora infestans resistant to metalaxyl

  • María Gabriela Maridueña-Zavala
  • Andrea Freire-Peñaherrera
  • Juan Manuel Cevallos-Cevallos
  • Esther Lilia Peralta
Article

Abstract

Phytophthora infestans is the most important potato pathogen worldwide. Various alternatives have been used to control the pathogen, including continuous applications of phenylamide fungicides which has caused a rapid development of resistance in populations of P. infestans. Despite the importance of the disease, metabolite profiling of fungicide-resistant P. infestans has not been reported. In vitro resistance of Phytophthora infestans isolates to metalaxyl was characterized and metabolic changes in resistant isolates were evaluated at low (0.5 mg/L) and high (100 mg/L) concentrations of the fungicide. About 70% of the isolates tested showed resistance to metalaxyl and a total of 49 metabolites were differently expressed in resistant isolates growing in the presence of the fungicide. Principal components analysis revealed a distinct metabolite profile of resistant isolates exposed to both low and high levels of metalaxyl. The main metabolites responsible for the clustering in both fungicide concentrations included fatty acids such as hexadecanoic and octadecanoic acids, sugars such as glucose and fructose, aminoacids such as proline and valine, and organic acids such as butanedioic and propanoic acids. Potential resistance-related metabolic pathways are mostly involved in the regulation of the pathogen’s membrane fluidity and included the fatty acid biosynthesis as well as the glycerophospholipid metabolism pathways. This is the first metabolomic-based characterization of fungicide resistance in plant pathogens.

Keywords

Potato Late blight Metabolomics Fungicide resistance GC-MS 

References

  1. Aav, A., Skrabule, I., Bimšteine, G., Kaart, T., Williams, I. H., & Runno-Paurson, E. (2015). The structure of mating type, metalaxyl resistance and virulence of Phytophthora infestans isolates collected from Latvia. Zemdirbyste-Agriculture, 102(3), 335–342.CrossRefGoogle Scholar
  2. Aliferis, K. A., & Chrysayi-Tokousbalides, M. (2011). Metabolomics in pesticide research and development: Review and future perspectives. Metabolomics, 7(1), 35–53.CrossRefGoogle Scholar
  3. Cenis, J. L. (1992). Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Research, 20(9), 2380 http://www.ncbi.nlm.nih.gov/pubmed/1594460. Accessed 26 November 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cevallos-Cevallos, J., & Reyes-De-Corcuera, J. I. (2012). Metabolomics in food science. Advances in Food and Nutrition Research, 67, 1–24.CrossRefPubMedGoogle Scholar
  5. Cevallos-Cevallos, J., Rouseff, R., & Reyes-De-Corcuera, J. I. (2009). Untargeted metabolite analysis of healthy and huanglongbing-infected orange leaves by CE-DAD. Electrophoresis, 30(7), 1240–1247.CrossRefPubMedGoogle Scholar
  6. Cevallos-Cevallos, J., García-Torres, R., Etxeberria, E., & Reyes-De-Corcuera, J. I. (2011a). GC-MS analysis of headspace and liquid extracts for metabolomic differentiation of citrus huanglongbing and zinc deficiency in leaves of “Valencia” sweet orange from commercial groves. Phytochemical analysis : PCA, 22(3), 236–246.CrossRefPubMedGoogle Scholar
  7. Cevallos-Cevallos, J., Danyluk, M. D., & Reyes-De-Corcuera, J. I. (2011b). GC-MS based metabolomics for rapid simultaneous detection of Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Muenchen, and Salmonella Hartford in ground beef and chicken. Journal of Food Science, 76(4), M238–M246.CrossRefPubMedGoogle Scholar
  8. Cevallos-Cevallos, J. M., Futch, D. B., Reyes-De-Corcuera, J. I., Folimonova, S. Y., & Shilts, T. (2012). GC–MS metabolomic differentiation of selected citrus varieties with different sensitivity to citrus huanglongbing. Plant Physiology and Biochemistry, 53, 69–76.CrossRefPubMedGoogle Scholar
  9. Childers, R., Danies, G., Myers, K., Fei, Z., Small, I. M., & Fry, W. E. (2015). Acquired resistance to mefenoxam in sensitive isolates of Phytophthora infestans. Phytopathology, 105(3), 342–349.CrossRefPubMedGoogle Scholar
  10. Davidse, L. C., Gerritsma, O. C. M., Ideler, J., Pie, K., & Velthuis, G. C. M. (1988). Antifungal modes of action of metalaxyl, cyprofuram, benalaxyl and oxadixyl in phenylamide-sensitive and phenylamide-resistant strains of Phytophthora megasperma F. Sp. medicaginis and Phytophthora infestans. Crop Protection, 7(6), 347–355.CrossRefGoogle Scholar
  11. Dawaliby, R., Trubbia, C., Delporte, C., Noyon, C., Ruysschaert, J.-M., Van Antwerpen, P., & Govaerts, C. (2016). Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic cells. The Journal of Biological Chemistry, 291(7), 3658–3667.CrossRefPubMedGoogle Scholar
  12. Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics. doi:10.1002/cfg.82.PubMedPubMedCentralGoogle Scholar
  13. Goodwin, S., Sujkowski, L., & Fry, W. (1996). Widespread distribution and probable origin of resistance of metalaxyl in clonal genotypes of Phytophthora infestans in the United States and western Canada. Ecology and Epidemiology, 86(7), 793–800.Google Scholar
  14. Grünwald, N. J., Sturbaum, A. K., Montes, G. R., Serrano, E. G., Lozoya-Saldaña, H., & Fry, W. E. (2006). Selection for fungicide resistance within a growing season in field populations of Phytophthora infestans at the Center of Origin. Phytopathology, 96(12), 1397–1403.CrossRefPubMedGoogle Scholar
  15. Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30 http://www.ncbi.nlm.nih.gov/pubmed/10592173. Accessed 28 November 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24(10), 853–863.CrossRefGoogle Scholar
  17. Maridueña-Zavala, M. G., Villavicencio-Vásquez, M. E., Cevallos-Cevallos, J. M., & Peralta, E. L. (2016). Molecular and morphological characterization of Moniliophthora roreri isolates from cacao in Ecuador. Canadian Journal of Plant Pathology, 38(4), 460–469.CrossRefGoogle Scholar
  18. Matson, M. E. H., Small, I. M., Fry, W. E., & Judelson, H. S. (2015). Metalaxyl resistance in Phytophthora infestans : Assessing role of RPA190 Gene and Diversity within clonal lineages. Phytopathology, 105(12), 1594–1600.CrossRefPubMedGoogle Scholar
  19. Mukalazi, J., Adipala, E., Sengooba, T., Hakiza, J. J., Olanya, M., & Kidanemariam, H. M. (2001). Metalaxyl resistance, mating type and pathogenicity of Phytophthora infestans in Uganda. Crop Protection, 20(5), 379–388.CrossRefGoogle Scholar
  20. Palma-Guerrero, J., Lopez-Jimenez, J. A., Pérez-Berná, A. J., Huang, I.-C., Jansson, H.-B., Salinas, J., et al. (2010). Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology, 75(4), 1021–1032.CrossRefPubMedGoogle Scholar
  21. Pérez, W., Lara, J., & Forbes, G. A. (2009). Resistance to metalaxyl-M and cymoxanil in a dominant clonal lineage of Phytophthora infestans in Huánuco, Peru, an area of continuous potato production. European Journal of Plant Pathology, 125(1), 87–95.CrossRefGoogle Scholar
  22. Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11(1), 395.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Randall, E., Young, V., Sierotzki, H., Scalliet, G., Birch, P. R. J., Cooke, D. E. L., et al. (2014). Sequence diversity in the large subunit of RNA polymerase I contributes to mefenoxam insensitivity in Phytophthora infestans. Molecular Plant Pathology, 15(7), 664–676.CrossRefPubMedGoogle Scholar
  24. Riveros, F., Sotomayor, R., Rivera, V., Secor, G., & Espinoza, B. (2003). Resistance of Phytophthora infestans (Montagne) de Bary to metalaxyl in potato crops in northern Chile 1. Agricultura tecnica de Chile, 63(2), 117–124.Google Scholar
  25. Robson, G. D., Wiebe, M., Kuhn, P. J., & Trinci, A. P. J. (1990). Inhibitors of phospholipid biosynthesis. In P. J. Kuhn, A. P. J. Trinci, M. J. Jung, M. W. Goosey, & L. G. Copping (Eds.), Biochemistry of Cell Walls and Membranes in Fungi - Google Libros (1st ed., pp. 261–279). New York.Google Scholar
  26. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol, 30, 2725–2729.Google Scholar
  27. Turk, M., Meanelle, L., Marjeta, A., Entjurc, Š., Grimalt, J. O., Gunde-Cimerman, N., & Plemenitasšalt, A. (2004). Induced changes in lipid composition and membrane fluidity of halophilic yeast - like melanized fungi. Extremophiles, 8, 53–61.CrossRefPubMedGoogle Scholar
  28. Wang, X., Guo, M., Min, F., Gao, Y., Xu, F., Yang, S., & Lu, D. (2012). Virulence complexity and high levels of fungicide resistance suggest population change of Phytophthora infestans in the Heilongjiang Province of China. Potato Research, 55(3–4), 217–224.CrossRefGoogle Scholar
  29. Warth, B., Parich, A., Bueschl, C., Schoefbeck, D., Neumann, N. K. N., Kluger, B., et al. (2015a). GC–MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics, 11(3), 722–738.CrossRefPubMedGoogle Scholar
  30. Warth, B., Parich, A., Bueschl, C., Schoefbeck, D., Neumann, N. K. N., Kluger, B., et al. (2015b). GC–MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics, 11(3), 722–738.CrossRefPubMedGoogle Scholar
  31. Yogendra, K. N., Kushalappa, A. C., Sarmiento, F., Rodriguez, E., Mosquera, T., Bassard, J., et al. (2014). Metabolomics deciphers quantitative resistance mechanisms in diploid potato clones against late blight. Functional Plant Biology, 42(3), 284–298.Google Scholar
  32. Yogendra, K. N., Kushalappa, A. C., Sarmiento, F., Rodriguez, E., & Mosquera, T. (2015). Metabolomics deciphers quantitative resistance mechanisms in diploid potato clones against late blight. Functional Plant Biology, 42(3), 284–298.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2017

Authors and Affiliations

  • María Gabriela Maridueña-Zavala
    • 1
  • Andrea Freire-Peñaherrera
    • 1
  • Juan Manuel Cevallos-Cevallos
    • 1
    • 2
  • Esther Lilia Peralta
    • 1
    • 2
  1. 1.Escuela Superior Politecnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE). Campus Gustavo Galindo Km 30.5 vía perimetralGuayaquilEcuador
  2. 2.Escuela Superior Politecnica del Litoral, ESPOL, Facultad de Ciencias de la Vida (FCV). Campus Gustavo Galindo Km 30.5 vía perimetralGuayaquilEcuador

Personalised recommendations