Skip to main content
Log in

The potential use of carvacrol for the control of Meloidogyne javanica

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Root-knot nematodes Meloidogyne spp. are a major problem reducing vegetable’s production in Greece. The aim of this study was to determine the nematicidal activity of carvacrol, a phenolic monoterpene present in the essential oils of several plant families. Nematicidal activities of carvacrol at doses of 250–1000 ppm showed strong effects on different life stages against the root-knot nematode Meloidogyne javanica, under laboratory conditions. In the present work, for the first time, we tested the vapour and sublethal dose activities of carvacrol. Particularly, carvacrol paralyzed more than 90% of second-stage juveniles (J2s) at a dose of 250 ppm. Also, it inhibited hatching as well as egg differentiation. Additionally, using carvacrol at sublethal doses, a reduction of female numbers per gram in tomato roots in pot experiment was recorded. Nevertheless, no nematostatic effects were observed in paralysis bioassays. These results indicate that the use of carvacrol may provide potential natural nematicide however further studies are needed to clarify its mode of action against nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbot, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.

    Article  Google Scholar 

  • Albuquerque, M. R. J. R., Costa, S. M. O., Bandeira, P. N., Santiago, G. M. P., Andrade-Neto, M., Silveira, E. R., & Pessoa, O. D. L. (2007). Nematicidal and larvicidal activities of the essential oils from aerial parts of Pectis oligocephala and Pectis apodocephala Baker. Anais da Academia Brasileira de Ciências, 79(2), 209–213.

    Article  CAS  PubMed  Google Scholar 

  • Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils - A review. Food and Chemical Toxicology, 46(2), 446–475.

    Article  CAS  PubMed  Google Scholar 

  • Barry, H. K., Koutros, S., Lubin, H. J., Coble, B. J., Barone-Adesi, F., Beane Freeman, E. L., Sandler, P. D., Hoppin, A. J., Ma, X., Zheng, T., & Alavanja, C. R. M. (2012). Methyl bromide exposure and cancer risk in the Agricultural Health Study. Cancer Causes & Control, 23(6), 807–818.

    Article  Google Scholar 

  • Bleve-Zacheo, T., Mellilo, M. T., & Castagnone-Sereno, P. (2007). The contribution of biotechnology to root-knot nematode control in tomato plants. Pest Technology, 1(1), 1–16.

    Google Scholar 

  • Brown, D. J. F., & Boag, B. (1988). An examination of methods used to extract virus-vector nematodes (Nematoda: Longidoridae and Trichodoridae) from soil samples. Nematologia Mediterranea, 16(1), 93–99.

    Google Scholar 

  • Byrd, D. W., Krickpatrick, T., & Barker, K. R. (1983). An improved technique for cleaning and staining plant tissue for detection of nematodes. Journal of Nematology, 15(1), 142–143.

    Google Scholar 

  • Camo, J., Lorés, A., Djenane, D., Beltrán, J.-A., & Roncalés, P. (2011). Display life of beef packaged with an antioxidant active film as a function of the concentration of oregano extract. Meat Science, 88(1), 174–178.

    Article  CAS  PubMed  Google Scholar 

  • Chitwood, D. J. (2002). Phytochemical based strategies for nematode control. Annual Review of Phytopathology, 40, 221–249.

    Article  CAS  PubMed  Google Scholar 

  • Da Rosa, C. G., De Oliveira Brisola Maciel, M. V., De Carvalho, S. M., De Melo, A. P. Z., Jummes, B., Da Silva, T., Martelli, S. M., Villetti, M. A., Bertoldi, F. C., & Barreto, P. L. M. (2015). Characterization and evaluation of physicochemical and antimicrobial properties of zein nanoparticles loaded with phenolics monoterpenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 337–344.

    Article  Google Scholar 

  • De Vincenzi, M., Stammati, A., De Vincenzi, A., & Silano, M. (2004). Constituents of aromatic plants: carvacrol. Fitoterapia, 75(7), 801–804.

    Article  CAS  PubMed  Google Scholar 

  • Flegg, J. J. M. (1967). Extraction of Xiphinema and Longidorus species from soil by a modification of Cobb’s decanting and sieving technique. Annals of Applied Biology, 60(3), 429–437.

    Article  Google Scholar 

  • Giannakou, I. O. (2011). Efficacy of a formulated product containing Quillaja saponaria plant extracts for the control of root-knot nematodes. European Journal of Plant Pathology, 130(4), 587–596.

    Article  Google Scholar 

  • Giannakou, I. O., Karpouzas, D. G., Anastasiadis, I., Tsiropoulos, N. G., & Georgiadou, A. (2005). Factors affecting the efficacy of non-fumigant nematicides to control root-knot nematodes. Pest Management Science, 61(10), 961–972.

    Article  CAS  PubMed  Google Scholar 

  • Hussey, R. S., & Barker, K. R. (1973). A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease. Report, 57, 1025–1028.

    Google Scholar 

  • Ibrahim, S. K., Traboulsi, A. F., & El-Haj, S. (2006). Effect of essential oils and plant extracts on hatching, migration and mortality of Meloidogyne incognita. Phytopathologia Mediterranea, 45(3), 238–246.

    CAS  Google Scholar 

  • Isman, M. B. (2000). Plant essential oils for pest and disease management. Crop Protection, 19(8), 603–608.

    Article  CAS  Google Scholar 

  • Isman, M. B., Wan, A. J., & Passreiter, C. M. (2001). Insecticidal activity of essential oils to the tobacco cutworm, Spodoptera litura. Fitoterapia, 72(1), 65–68.

    Article  CAS  PubMed  Google Scholar 

  • Jaberian, H., Piri, K., & Nazari, J. (2013). Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chemistry, 136(1), 237–244.

    Article  CAS  PubMed  Google Scholar 

  • Karpouzas, D. G., & Walker, A. (2000). Aspects of the enhanced biodegradation and metabolism of ethoprophos in soil. Pest Management Science, 56(6), 540–548.

    Article  CAS  Google Scholar 

  • Karpouzas, D. G., Hatziapostolou, P., Papadopoulou-Mourkidou, E., Giannakou, I. O., & Georgiadou, A. (2004). The enhanced biodegradation of fenamiphos in soils from previously treated sites and the effect of soil fumigants. Environmental Toxicology and Chemistry, 23(9), 2099–2107.

    Article  CAS  PubMed  Google Scholar 

  • Karpouzas, D. G., Pantelelis, I., Menkissoglu-Spiroudi, U., Golia, E., & Tsiropoulos, G. N. (2007). Leaching of the organophosphorus nematicide fosthiazate. Chemosphere, 68(7), 1359–1364.

    Article  CAS  PubMed  Google Scholar 

  • Liolios, C. C., Graikou, K., Skaltsa, E., & Chinou, I. (2010). Dittany of Crete: a botanical and ethnopharmacological review. Journal of Ethnopharmacology, 131(2), 229–241.

    Article  PubMed  Google Scholar 

  • Liu, J. Β., Sun, J. Ζ., Qiu, J. Υ., Liu, X. Ζ., & Xiang, M. C. (2014). Integrated management of root-knot nematodes on tomato in glasshouse production using nematicides and a biocontrol agent, and their effect on soil microbial communities. Nematology, 16(4), 463–473.

    Article  Google Scholar 

  • Ma, W. B., Feng, J. T., Jiang, Z. L., Wu, H., Ma, Z. Q., & Zhang, X. (2014). Fumigant activity of eleven essential oil compounds and their selected binary mixtures against Culex pipiens pallens (Diptera: Culicidae). Parasitology Research, 113(10), 3631–3637.

    Article  PubMed  Google Scholar 

  • Moens, M., Perry, N. P., & Starr, L. J. (2009). Root-Knot Nematodes. Wallingford: CAB International.

    Google Scholar 

  • Ntalli, N. G., & Menkissoglu-Spiroudi, U. (2011). Pesticides of Botanical Origin:A Promising Tool in Plant Protection. In M. Stoytcheva (Ed.), Pesticides - Formulations, Effects, Fate. Ch. 1 (pp. 3–24). Europe: InTech.

    Google Scholar 

  • Ntalli, N. G., Ferrari, F., Giannakou, I., & Menkissoglu-Spiroudi, U. (2010). Phytochemistry and nematicidal activity of the essential oils from 8 greek lamiaceae aromatic plants and 13 terpene components. Journal of Agricultural and Food Chemistry, 58(13), 7856–7863.

    Article  CAS  PubMed  Google Scholar 

  • Ntalli, N. G., Ferrari, F., Giannakou, I., & Menkissoglu-Spiroudi, U. (2011). Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Management Science, 67(3), 341–351.

    Article  CAS  PubMed  Google Scholar 

  • Oka, Y., Nacar, S., Putievsky, E., Ravid, U., Yaniv, Z., & Spiegel, Y. (2000). Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology, 90(7), 710–715.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, D. R., Leitão, G. G., Bizzo, H. R., Lopes, D., Alviano, D. S., & Alviano, C. S. (2006). Chemical and antimicrobial analyses of essential oil of Lippia origanoides. Food Chemistry, 101(1), 236–240.

    Article  Google Scholar 

  • Pandey, R., Kalra, A., Tandon, S., Mehrotra, N., Singh, H. N., & Kumar, S. (2000). Essential oils as potent sources of nematicidal compounds. Journal of Phytopathology, 148(7–8), 501–502.

    Article  CAS  Google Scholar 

  • Pérez, M. P., Navas-Cortés, J. A., Pascual-Villalobos, M. J., & Castillo, P. (2003). Nematicital activity of essential oils and organic amendments from Asteraceae against root-knot nematodes. Plant Pathology, 52(3), 395–401.

    Article  Google Scholar 

  • Pérez, S. G., Zavala, M. S., Arias, L. G., & Ramos, M. L. (2011). Anti-inflammatory Activity of Some Essential Oils. Journal of Essential Oil Research, 23(5), 38–44.

    Article  Google Scholar 

  • Phillips, A. K., & Appel, A. G. (2010). Fumigant toxicity of essential oils to the German cockroach (Dictyoptera: Blattellidae). Journal of Economic Entomology, 103(3), 781–790.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, M. F., & Byrne, O. (1988). Plant-insect coevolution and inhibition of acetylcholinesterase. Journal of Chemical Ecology, 14(10), 1965–1975.

    Article  CAS  PubMed  Google Scholar 

  • San Martin, R., & Magunacelaya, J. C. (2005). Control of plant-parasitic nematodes with extracts of Quillaja saponaria. Nematology, 7(4), 577–585.

    Article  CAS  Google Scholar 

  • Shaaya, E., & Rafaeli, A. (2007). Essential oils as biorational insecticides–potency and mode of action. In I. Ishaaya, R. Nauen, & A. R. Horowitz (Eds.), Insecticides design using advanced technologies (pp. 249–261). Berlin: Springer.

    Chapter  Google Scholar 

  • Sousa, R., Rosa, J., Silva, C., Almeida, M., Novo, M., Cunha, A., & Fernandes-Ferreira, M. (2015). Larvicidal, molluscicidal and nematicidal activities of essential oils and compounds from Foeniculum vulgare. Journal of Pest Science, 88(2), 413–426.

    Article  Google Scholar 

  • Suntres, Z. E., Coccimiglio, J., & Alipour, M. (2015). The Bioactivity and Toxicological Actions of Carvacrol. Critical Reviews in Food Science and Nutrition, 55(3), 304–318.

    Article  CAS  PubMed  Google Scholar 

  • Tabari, M., Youssefi, M., Barimani, A., & Araghi, A. (2015). Carvacrol as a potent natural acaricide against Dermanyssus gallinae. Parasitology Research, 114(10), 3801–3806.

    Article  PubMed  Google Scholar 

  • Tzortzakakis, E. A., & Trudgill, D. L. (2005). A comparative study of the thermal time requirements for embryogenesis in Meloidogyne javanica and M. incognita. Nematology, 7(2), 313–315.

    Article  Google Scholar 

  • Ultee, A., Bennik, M. H. J., & Moezelaar, R. (2002). The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus cereus. Applied and Environmental Microbiology, 68(4), 1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhagen, C., Lebbink, G., & Bloem, J. (1996). Enhanced biodegradation of the nematicides 1,3-dichloropropene and methyl isothiocyanate in a variety of soils. Soil Biology and Biochemistry, 28(12), 1753–1756.

    Article  CAS  Google Scholar 

  • Vokou, D., Kokkini, S., & Bessiere, J. M. (1993). Geographical variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochemical Systematics and Ecology, 21(2), 287–295.

    Article  CAS  Google Scholar 

  • Wharton, D. A. (2002). Nematode survival strategies. In D. L. Lee (Ed.), The biology of nematodes (pp. 389–411). New York: Taylor & Francis.

    Chapter  Google Scholar 

  • Zhang, Z., Yang, T., Zhang, Y., Wang, L., & Xie, Y. (2016). Fumigant toxicity of monoterpenes against fruitfly, Drosophila melanogaster. Industrial Crops and Products, 81, 147–151.

    Article  CAS  Google Scholar 

  • Zotti, M., Colaianna, M., Morgese, M. G., Tucci, P., Schiavone, S., Avato, P., & Trabace, L. (2013). Carvacrol: From ancient flavoring to Neuromodulatory agent. Molecules, 18(6), 6161–6172.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni Nasiou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiou, E., Giannakou, I.O. The potential use of carvacrol for the control of Meloidogyne javanica . Eur J Plant Pathol 149, 415–424 (2017). https://doi.org/10.1007/s10658-017-1191-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1191-z

Keywords

Navigation