Skip to main content
Log in

Mevalonate pathway genes expressed in chilli CM334 inoculated with Phytophthora capsici and infected by Nacobbus aberrans and Meloidogyne enterolobii

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The chilli pepper landrace CM334 (Capsicum annuum L.) is resistant to Phytophthora capsici (Pc), but susceptible to Meloidogyne enterolobii (Me) and Nacobbus aberrans (Na). Resistance to Pc is associated with capsidiol (sesquiterpene phytoalexin). To know the transcriptional alterations that Na or Me induce in CM334 plants, the expression levels of some genes of the mevalonate pathway were determined by RT-qPCR. At 3 or 21 days after inoculation with nematode (dai), plant stems were inoculated with Pc (NaPc and MePc treatments), furthermore, there were also plants inoculated only with Pc, Na, and Me. At 6, 24 and 48 h after inoculation with Pc (haio), the transcripts accumulation of HMG2 (hydroxymethylglutaryl-CoA reductase 2), EAS (5-epiaristolochene synthase) (associated with sesquiterpene phytoalexin biosynthesis), HMG3 and SS genes (squalene synthase) was assessed; also capsidiol accumulation was evaluated at 144 haio. The transcript levels were generally lower in NaPc, MePc, Na and Me than those recorded in the Pc treatment (0.05) at 3 and 21 dai with Na or Me. Only when Pc was inoculated at 21 dai with the nematode, the capsidiol levels were significantly lower in stems of plants infected by NaPc and MePc compared to Pc treatment. In contrast, in roots the differences between Pc vs NaPc and Pc vs MePc, were significant both at 3 and 21 dai (0.05). The two nematodes altered the expression of defense genes systemically (stems), and reduced capsidiol levels locally and systemically, possibly to create a favorable environment that allowed them to complete their life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abad, P., & Williamson, V. M. (2010). Plant nematode interaction: a sophisticated dialogue. Advances in Botanical Research, 53, 147–192.

    Article  CAS  Google Scholar 

  • Abad, P., Castagnone-Sereno, P., Rosso, M. N., de Almeida, E. J., & Favery, B. (2009). Invasion, feeding and development. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 163–181). Wallingford, UK: CAB International.

    Chapter  Google Scholar 

  • Atkins, S. D., Manzanilla-López, R. H., Franco, J., Peteira, B., & Kerry, B. R. (2005). A molecular diagnostic method for detecting Nacobbus in soil and in potato tubers. Nematology, 7, 193–202.

    Article  CAS  Google Scholar 

  • Back, M. A., Haydock, P. P. J., & Jenkinson, P. (2002). Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathology, 51, 683–697.

    Article  Google Scholar 

  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Or, C., Kapulnik, Y., & Koltai, H. (2005). A broad characterization of the transcriptional profile of the compatible tomato response to the plant parasitic root knot nematode Meloidogyne javanica. European Journal of Plant Pathology, 111, 181–192.

    Article  CAS  Google Scholar 

  • Brito, J. A., Stanley, J. D., Kaur, R., Cetintas, R., Di Vito, M., Thies, J. A., & Dickson, D. W. (2007). Effects of the Mi-1, N and Tabasco genes on infection and reproduction of Meloidogyne mayaguensis on tomato and pepper genotypes. Journal of Nematology, 39, 327–332.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bybd Jr., D. W., Kirkpatrick, T., & Barker, K. R. (1983). An improved technique for clearing and staining plant tissues for detection of nematodes. Journal of Nematology, 15, 142–143.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caillaud, M. C., Dubreuil, G., Quentin, M., Perfus-Barbeoch, L., Lecomte, P., de Almeida, E. J., Abad, P., Rosso, M. N., & Favery, B. (2008). Root-knot nematodes manipulate plant cell functions during a compatible interaction. Journal of Plant Physiology, 165, 104–113.

    Article  CAS  PubMed  Google Scholar 

  • Candela, M. E., Egea, C., García-Pérez, M. D., Costa, J., & Candela, M. (2000). Breeding papryka type peppers resistant to Phytophthora capsici. Acta Horticulturae, 522, 79–86.

    Article  Google Scholar 

  • Chappell, J. (1995). Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 521–547.

    Article  CAS  Google Scholar 

  • Chávez-Moctezuma, M. P., & Lozoya-Gloria, E. (1996). Biosynthesis of the sesquiterpenic phytoalexin capsidiol in elicited root cultures of chili pepper (Capsicum annuum). Plant Cell Reports, 15, 360–366.

    Article  PubMed  Google Scholar 

  • Choi, D., Ward, B. L., & Bostock, R. M. (1992). Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl Coenzime a reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. The Plant Cell, 4, 1333–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djian-Caporalino, C., Fazari, A., Arguel, M. J., Vernie, T., VandeCasteele, C., Faure, I., Brunoud, G., Pijarowski, L., Palloix, A., Lefebvre, V., & Abad, P. (2007). Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theoretical and Applied Genetics, 114, 473–486.

    Article  CAS  PubMed  Google Scholar 

  • Egea, C., García, P. M. D., & Candela, M. E. (1996). Capsidiol accumulation in Capsicum annuum stems during the hypersensitive reaction to Phytophthora capsici. Journal of Plant Physiology, 149, 762–764.

    Article  CAS  Google Scholar 

  • Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul, Minnesota: The American Phytopathological Society.

    Google Scholar 

  • Eves-van den Akker, S., Lilley, C. J., Danchin, E. G. J., Rancurel, C., Cock, P. J. A., Urwin, P. E., & Jones, J. T. (2014). The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes. Genome Biology and Evolution, 6, 2181–2194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Herrera, E., Rojas-Martínez, R. I., Guevara-Olvera, L., Rivas-Dávila, M. E., Valadez-Moctezuma, E., & Zavaleta-Mejía, E. (2012). Defensa en chile CM-334 inoculado con Phytophthora capsici e infectado por Nacobbus aberrans. Nematropica, 42, 96–107.

    Google Scholar 

  • Fernández-Pavia, S. (1997). Host-Pathogen interactions in the root rot Phytophthora capsici/Capsicum annuum resistant CM-334 pathosystem. PhD Thesis. New Mexico State University.

  • Godínez-Vidal, D., Soto-Hernández, M., Rocha-Sosa, M., Lozoya-Gloria, E., Rojas-Martínez, R. I., Guevara-Olvera, L., & Zavaleta-Mejía, E. (2010). Contenido de capsidiol en raíces de chile CM-334 infectadas por Nacobbus aberrans y su efecto en juveniles del segundo estadio. Nematropica, 40, 227–237.

    Google Scholar 

  • Godínez-Vidal, D., Rocha-Sosa, M., Sepúlveda-García, E. B., Lozoya-Gloria, E., Rojas-Martínez, R. I., Guevara-Olvera, L., & Zavaleta-Mejía, E. (2013). Tanscript accumulation of the mevalonate pathway genes and enzymatic activity of HMGCoA-r and EAS in chilli CM-334 infected by the false root-knot nematode Nacobbus aberrans. Plant and Soil, 372, 339–348.

    Article  Google Scholar 

  • Gonçalves, L. S. A., Gomes, V. M., Robaina, R. R., Valim, R. H., Rodrigues, R., & Aranha, F. M. (2014). Resistance to root-knot nematode (Meloidogyne enterolobii) in Capsicum spp. accessions. Revista Brasileira de Ciências Agrárias, 9, 49–52.

    Article  Google Scholar 

  • Ha, S. H., Kim, J. B., Hwang, Y. S., & Lee, S. W. (2003). Molecular characterization of three 3-hydroxy-3-methylglutaryl-CoA reductase genes including pathogen-induced Hmg2 from pepper (Capsicum annuum). Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1625, 253–260.

    Article  CAS  Google Scholar 

  • Hartmann, M. A. (2004). Sterol metabolism and functions in higher plants. In G. Daum (Ed.), Lipid metabolism and membrane biogenesis. Topics in current genetics 6 (pp. 183–211). Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Jammes, F., Lecomte, P., de Almeida-Engler, J., Bitton, F., Martin-Magniette, M. L., Renou, J. P., Abad, P., & Favery, B. (2005). Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. The Plant Journal, 44, 447–458.

    Article  CAS  PubMed  Google Scholar 

  • Karssen, G., Liao, J., Kan, Z., van Heese, E. Y., & den Nijs, L. J. (2012). On the species status of the root-knot nematode Meloidogyne mayaguensis Rammah & Hirschmann, 1988. ZooKeys, 181, 67–77.

    Article  Google Scholar 

  • Kyndt, T., Nahar, K., Haegeman, A., de Vleesschauwer, D., Höfte, M., & Gheysen, G. (2012). Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biology, 14, 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Long, H., Liu, H., & Xu, J. H. (2006). Development of a PCR diagnostic for the root-knot nematode Meloidogyne enterolobii. Acta Phytopathologica Sinica, 36, 109–115.

    Google Scholar 

  • López-Martínez, N., Colinas-León, M. T., Peña-Valdivia, C. B., Salinas-Moreno, Y., Fuentes-Montiel, P., Biesaga, M., & Zavaleta-Mejía, E. (2011). Alterations in peroxidase activity and phenylpropanoid metabolism induced by Nacobbus aberrans Thorne and Allen, 1944 in chilli (Capsicum annuum L.) CM-334 resistant to Phytophthora capsici Leo. Plant and Soil, 338, 399–409.

    Article  Google Scholar 

  • Manzanilla-López, R. H., Costilla, M. A., Doucet, M., Franco, J., Inserra, R. N., Lehman, P. S., Cid del Prado-Vera, I., Souza, R. M., & Evans, K. (2002). The genus Nacobbus Thorne & Allen, 1944 (Nematoda: Pratylenchidae): systematics, distribution, biology and management. Nematropica, 32, 150–227.

    Google Scholar 

  • Marley, P. S., & Hillocks, R. J. (1994). Effect of root-knot nematodes on cajanol accumulation in the vascular tissues of pigeonpea after stem inoculation with Fusarium udum. Plant Patholology, 43, 172–176.

    Article  CAS  Google Scholar 

  • Ohyama, K., Suzuki, M., Masuda, K., Yoshida, S., & Muranaka, T. (2007). Chemical phenotypes of the hmg1 and hmg2 mutants of Arabidopsis demonstrate the In-planta role of HMG-CoA reductase in triterpene biosynthesis. Chemical and Pharmaceutical Bulletin, 55, 1518–1521.

    Article  CAS  PubMed  Google Scholar 

  • Pegard, A., Brizzard, G., Fazari, A., Soucaze, O., Abad, P., & Djian-Caporalino, C. (2005). Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology, 95, 158–165.

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute, Inc. (2002). SAS Procedures Guide, Version 9.0 (computer program). Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  • Silvar, C., Merino, F., & Díaz, J. (2008). Differential activation of defense-related genes in susceptible and resistant pepper cultivars infected with Phytophthora capsici. Journal of Plant Physiology, 165, 1120–1124.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, M., & Muranaka, T. (2007). Molecular genetics of plant sterol backbone synthesis. Lipids, 42, 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, S., Yeo, Y. S., Zhao, Y., O’Maille, P. E., Greenhagen, B. T., Noel, J. P., Coates, R. M., & Chapell, J. (2007). Functional characterization of premnaspirodiene oxygenase, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates. The Journal of Biological Chemistry, 282, 31744–31754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tigano, M., de Siqueira, K., Castagnone-Sereno, P., Mulet, K., Queiroz, P., dos Santos, M., Teixeira, C., Almeida, M., Silva, J., & Carneiro, R. (2010). Genetic diversity of the root-knot nematode Meloidogyne enterolobii and development of a SCAR marker for this guava-damaging species. Plant Pathology, 59, 1054–1061.

    Article  CAS  Google Scholar 

  • Trujillo-Viramontes, F., Zavaleta-Mejía, E., Rojas-Martínez, R. I., & Lara, J. (2005). Tiempo de inoculación y nivel de inóculo, factores determinantes para el rompimiento de resistencia a Phytophthora capsici inducido por Nacobbus aberrans en chile (Capsicum annuum). Nematropica, 35, 37–44.

    Google Scholar 

  • Ueeda, M., Kubota, M., & Nishi, K. (2006). Contribution of jasmonic acid to resistance against Phytopthora blight in Capsicum annuum cv. SCM334. Physiological and Molecular Plant Pathology, 67, 149–154.

    Article  Google Scholar 

  • Villar-Luna, E., Reyes-Trejo, B., Rojas-Martínez, R. I., Gómez-Rodríguez, O., Hernández-Anguiano, A. M., & Zavaleta-Mejía, E. (2009). Respuesta hipersensitiva en el follaje de Chile CM.334 resistente a Phytophthora capsici infectado con Nacobbus aberrans. Nematropica, 39, 143–155.

    Google Scholar 

  • Villar-Luna, H., Reyes-Trejo, B., Gómez-Rodríguez, O., Villar-Luna, E., & Zavaleta-Mejía, E. (2015). Expresión de genes de defensa y acumulación de capsidiol en la interacción compatible chile CM334/Nacobbus aberrans e incompatible chile CM334/Meloidogyne incognita. Nematropica, 45, 9–19.

    Google Scholar 

  • Vögeli, U., & Chappell, J. (1988). Induction of sesquiterpene cyclase and supression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiology, 72, 864–869.

    Google Scholar 

  • Von Mende, N. (1997). Invasion and migration behaviour of sedentary nematodes. In C. Fenoll, F. M. W. Grundler, & S. A. Ohl (Eds.), Cellular and molecular aspects of plant-nematode interactions (pp. 51–64). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Vrain, T. C. (1977). A technique for the collection of larvae of Meloidogyne spp. and a comparison of eggs and larvae as inocula. Journal of Nematology, 9, 249–251.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, B., & Eisenback, J. D. (1983). Meloidogyne enterolobii n. sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. Journal of Nematology, 15, 381-391.

  • Zavala-Páramo, G., Chávez-Moctezuma, M. P., García-Pineda, E., Yin, S., Chappell, J., & Lozoya-Gloria, E. (2000). Isolation of an elicitor-stimulated 5-epi-aristolochene synthase gene (gPEAS1) from chilli pepper (Capsicum annuum). Physiologia Plantarum, 110, 410–418.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the National Council on Science and Technology (CONACYT) for the scholarship granted to the first author and the financial support for the development of this investigation (Project 46331 Z-CONACYT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Zavaleta-Mejía.

Electronic supplementary material

ESM 1

(PDF 347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villar-Luna, E., Rojas-Martínez, R.I., Reyes-Trejo, B. et al. Mevalonate pathway genes expressed in chilli CM334 inoculated with Phytophthora capsici and infected by Nacobbus aberrans and Meloidogyne enterolobii . Eur J Plant Pathol 148, 867–881 (2017). https://doi.org/10.1007/s10658-016-1142-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1142-0

Keywords

Navigation