Skip to main content
Log in

mtCOI successfully diagnoses the four main plant-parasitic Aphelenchoides species (Nematoda: Aphelenchoididae) and supports a multiple origin of plant-parasitism in this paraphyletic genus

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Composed mostly of fungivorous species, the genus Aphelenchoides also comprises 14 plant-parasitic species. The most common and devastating, A. besseyi, A. fragariae, A. ritzemabosi and A. subtenuis have been reported on more than 900 plant species. The combination of low inter-specific and high intra-specific morphological variability makes morphology-based identification extremely difficult within this genus, and has led to molecular tools being employed to ensure accurate diagnoses. rDNA markers are widely used for the identification of nematodes while the Cytochrome Oxidase I gene (COI) remains relatively unexplored despite its role as the standard barcode for almost all animal groups. To explore its suitability as a diagnostic tool, we studied a fragment of the mtCOI region of the four main plant-parasitic Aphelenchoides within a phylogenetic framework. We generated 69 mtCOI and 123 rDNA sequences of diverse Aphelenchoides taxa; 67 belong to the main plant-parasitic species including the first mtCOI sequence of A. fragariae and the first mtCOI and 28S sequences of A. subtenuis. mtCOI had a similar success rate for PCR amplification. Phylogenetic trees based on the three studied markers are largely in agreement with one another, validating their use for Aphelenchoides diagnosis; additionally, we were able to locate several misidentified sequences of plant-parasitic Aphelenchoides in existing databases. The concatenated analysis from the three markers resulted in a more robust insight into the phylogeny and evolution of Aphelenchoides, revealing that plant-parasitism has evolved independently at least three times within this genus, presumably from fungal-feeding ancestors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abascal, F., Zardoya, R., & Telford, M. J. (2010). TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research, 38(2), 1–7. doi:10.1093/nar/gkq291.

    Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Armenteros, M., Rojas-Corzo, A., Ruiz-Abierno, A., Derycke, S., Backeljau, T., & Decraemer, W. (2014). Systematics and DNA barcoding of free-living marine nematodes with emphasis on tropical desmodorids using nuclear SSU rDNA and mitochondrial COI sequences. Nematology, 16(8), 979–989.

    Article  Google Scholar 

  • Bakhetia, M., Charlton, W. L., Urwin, P. E., McPherson, M. J., & Atkinson, H. J. (2005). RNA interference and plant parasitic nematodes. Trends in Plant Science, 10(8), 362–367. doi:10.1016/j.tplants.2005.06.007.

    Article  CAS  PubMed  Google Scholar 

  • Bird, D. M., Jones, J. T., Opperman, C. H., Kikuchi, T., & Danchin, E. G. J. (2014). Signatures of adaptation to plant parasitism in nematode genomes. Parasitology, 1–14. doi:10.1017/S0031182013002163.

  • Blouin, M. S. (2002). Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. International Journal for Parasitology, 32(5), 527–531. doi:10.1016/S0020-7519(01)00357-5.

    Article  CAS  PubMed  Google Scholar 

  • Cardoza, Y., Giblin-Davis, R., Ye, W., Raffa, K., Center, B., & Kanzaki, N. (2008). Bursaphelenchus rufipennis n. sp. (Nematoda: Parasitaphelenchinae) and redescription of Ektaphelenchus obtusus (Nematoda: Ektaphelenchinae), associates from nematangia on the hind wings of Dendroctonus rufipennis (Coleoptera: Scolytidae). Nematology, 10, 925–955. doi:10.1163/156854108786161517.

    Article  Google Scholar 

  • Carta, L., Shiguang, L., Skantar, A., & Newcombe, G. (2016). Morphological and molecular characterization of two Aphelenchoides endophytic in poplar leaves. Journal of Nematology, 48(1), 27–33.

    Google Scholar 

  • Chałańska, A., Łabanowski, G., & Malewski, T. (2011). Rapid microscopic and molecular method Aphelenchoides species identification. Communications in Agricultural and Applied Biological Sciences, 76, 399–402.

    PubMed  Google Scholar 

  • Christie, J. R. (1932). Recent observations on the strawberry dwarf nematode in Massachusetts. Plant Disease Report, 16, 113–114.

  • Christie, J. R. (1942). A description of Aphelenchoides besseyi n. sp., the summer-dwarf nematode on strawberries, with comments on the identity of Aphelenchoides subtenuis (Cobb, 1926) and Aphelenchoides hodsoni Goodey, 1935. Proceedings of the Helminthological Society of Washington, 9, 82–84.

  • Cobb, N. A. (1926). Nemic diseases of narcissus. Official Records, USDA, 5, 3.

    Google Scholar 

  • Danchin, E. G. J., Rosso, M.-N., Vieira, P., de Almeida-Engler, J., Coutinho, P. M., Henrissat, B., & Abad, P. (2010). Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proceedings of the National Academy of Sciences of the United States of America, 107, 17651–17656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies, K., Ye, W., Kanzaki, N., Bartholomaeus, F., Zeng, Y., & Giblin-Davis, R. M. (2015). A review of the taxonomy, phylogeny, distribution and co-evolution of Schistonchus cobb, 1927 with proposal of Ficophagus n. gen. and Martininema n. gen. (Nematoda: Aphelenchoididae). Nematology, 17(7), 761–829. doi:10.1163/15685411-00002907.

  • De Ley, P., & Bert, W. (2002). Video capture and editing as a tool for the storage, distribution, and illustration of morphological characters of nematodes. Journal of Nematology, 34(4), 296–302.

    PubMed  PubMed Central  Google Scholar 

  • De Ley, P., De Ley, I. T., Morris, K., Abebe, E., Mundo-Ocampo, M., Yoder, M., Heras, J., Waumann, D., Rocha-Olivares, A., Jay-Burr, A., Baldwin, J., & Thomas, W. K. (2005). An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 360(1462), 1945–1958. doi:10.1098/rstb.2005.1726.

    Article  CAS  PubMed  Google Scholar 

  • Decraemer, W., & Hunt, D. J. (2013). Structure and classification. In R. N. Perry & M. Moens (Eds.), Plant Nematology (2nd ed., pp. 3–39). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Derycke, S., Remerie, T., Vierstraete, A., Backeljau, T., Vanfleteren, J. R., Vincx, M., & Moens, T. (2005). Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Marine Ecology Progress Series, 300, 91–103. doi:10.3354/meps300091.

    Article  CAS  Google Scholar 

  • Derycke, S., Vanaverbeke, J., Rigaux, A., Backeljau, T., & Moens, T. (2010). Exploring the use of cytochrome oxidase c subunit 1 (COI) for DNA barcoding of free-living marine nematodes. PloS One, 5(10), e13716. doi:10.1371/journal.pone.0013716.

    Article  PubMed  PubMed Central  Google Scholar 

  • Esmaeili, M., Fang, Y., Li, H., & Heydari, R. (2016). Description of Aphelenchoides huntensis sp. n. (Nematoda: Aphelenchoididae) isolated from Pinus sylvestris in western Iran. Nematology, 18(3), 357–366. doi:10.1163/15685411-00002963.

    Article  Google Scholar 

  • Fonseca, G., Derycke, S., & Moens, T. (2008). Integrative taxonomy in two free-living nematode species complexes. Biological Journal of the Linnean Society, 94(4), 737–753. http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.2008.01015.x/full. Accessed 2 January 2014

  • Frézal, L., & Leblois, R. (2008). Four years of DNA barcoding: current advances and prospects. Infection, Genetics and Evolution, 8(5), 727–736. doi:10.1016/j.meegid.2008.05.005.

    Article  PubMed  Google Scholar 

  • Fu, Z., Agudelo, P., & Wells, C. E. (2012). Differential expression of a β-1,4-endoglucanase induced by diet change in the foliar nematode Aphelenchoides fragariae. Phytopathology, 102(8), 804–811. doi:10.1094/PHYTO-12-11-0336.

    Article  CAS  PubMed  Google Scholar 

  • Glez-Peña, D., Gómez-Blanco, D., Reboiro-Jato, M., Fdez-Riverola, F., & Posada, D. (2010). ALTER: program-oriented conversion of DNA and protein alignments. Nucleic Acids Research, 38(SUPPL. 2), 14–18. doi:10.1093/nar/gkq321.

    Article  Google Scholar 

  • Haegeman, A., Jones, J. T., & Danchin, E. G. J. (2011). Horizontal gene transfer in nematodes: a catalyst for plant parasitism? Molecular plant-microbe interactions: MPMI, 24(8), 879–887. doi:10.1094/MPMI-03-11-0055.

    Article  CAS  PubMed  Google Scholar 

  • Hebert, P., Cywinska, A., & Ball, S. L. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helder, J., Vervoort, M., van Megen, H., Rybarczyk-Mydłowska, K., Quist, C., Smant, G., & Bakker, J. (2015). Phytopathogenic nematodes. In B. Lugtenber (Ed.), Principles of plant-microbe interactions: microbes for sustainable agriculture. Switzerland: Springer International Publishing.

    Google Scholar 

  • Hockland, S. (2001). A pragmatic approach to identifying Aphelenchoides species for plant health quarantine and pest management programmes. Ph.D. thesis. University of Reading, U.K.

  • Hockland, S. (2004). Aphelenchoides Besseyi. EPPO Bulletin, 34(2), 303–308. doi:10.1111/j.1365-2338.2004.00713.x.

    Article  Google Scholar 

  • Holterman, M., Van Der Wurff, A., Van Den Elsen, S., Van Megen, H., Bongers, T., Holovachov, O., Bakker, J., & Helder, J. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution, 23(9), 1792–1800. doi:10.1093/molbev/msl044.

    Article  CAS  PubMed  Google Scholar 

  • Holterman, M., Karssen, G., van den Elsen, S., van Megen, H., Bakker, J., & Helder, J. (2009). Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology, 99(3), 227–235. doi:10.1094/PHYTO-99-3-0227.

    Article  CAS  PubMed  Google Scholar 

  • Janssen, T., Karssen, G., Verhaeven, M., Coyne, D., & Bert, W. (2016). Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. Scientific Reports, 6(October 2015), 22591. doi:10.1038/srep22591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, J. T., Furlanetto, C., & Kikuchi, T. (2005). Horizontal gene transfer from bacteria and fungi as a driving force in the evolution of plant parasitism in nematodes. Nematology, 7(5), 641–646. doi:10.1163/156854105775142919.

    Article  CAS  Google Scholar 

  • Kanzaki, N. (2006). Description of Aphelenchoides xylocopae n. sp. (Nematoda: Aphelenchoididae), the first observed association between nematodes and carpenter bees. Nematology, 8(4), 555–562. doi:10.1163/156854106778613967.

    Article  Google Scholar 

  • Kanzaki, N., & Futai, K. (2002). A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within the xylophilus group. Nematology, 4(1), 35–41. doi:10.1163/156854102760082186.

    Article  CAS  Google Scholar 

  • Kanzaki, N., & Giblin-Davis, R. M. (2012). Chapter 7: Aphelenchoidea. In R. Manzanilla-Lopez & N. Marbán-Mendoza (Eds.), Practical Plant Nematology (pp. 161–208). Guadalajara: Biblioteca Básica de Agricultura.

    Google Scholar 

  • Kanzaki, N., Li, H.-F., Lan, Y.-C., & Giblin-Davis, R. M. (2014a). Description of two Pseudaphelenchus species (Tylenchomorpha: Aphelenchoididae) associated with Asian termites and proposal of Tylaphelenchinae n. subfam. Nematology, 16, 963–978. doi:10.1163/15685411-00002823.

    Article  Google Scholar 

  • Kanzaki, N., Tanaka, R., Giblin-Davis, R. M., & Davies, K. (2014b). New plant-parasitic nematode from the mostly mycophagous genus Bursaphelenchus discovered inside figs in Japan. PloS One, 9(6). doi:10.1371/journal.pone.0099241.

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. doi:10.1093/molbev/mst010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiewnick, S., Holterman, M., van den Elsen, S., van Megen, H., Frey, J. E., & Helder, J. (2014). Comparison of two short DNA barcoding loci (COI and COII) and two longer ribosomal DNA genes (SSU & LSU rRNA) for specimen identification among quarantine root-knot nematodes (Meloidogyne spp.) and their close relatives. European Journal of Plant Pathology, 140(1), 97–110. doi:10.1007/s10658-014-0446-1.

    Article  CAS  Google Scholar 

  • Miller, M. A., Pfeiffer, W., Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop, GCE 2010, 1–8. doi:10.1109/GCE.2010.5676129.

  • Mlsof, B., & Katharina, M. (2009). A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Systematic Biology, 58(1), 21–34. doi:10.1093/sysbio/syp006.

    Article  Google Scholar 

  • Nunn, G. B. (1992). Nematode molecular evolution. An investigation of evolutionary patterns among nematodes based upon DNA sequences. Ph.D. thesis. University of Nottingham, U.K.

  • Palomares-Rius, J. E., Cantalapiedra-Navarrete, C., & Castillo, P. (2014a). Cryptic species in plant-parasitic nematodes. Nematology, 16(10), 1105–1118. doi:10.1163/15685411-00002831.

    Article  Google Scholar 

  • Palomares-Rius, J. E., Hirooka, Y., Tsai, I. J., Masuya, H., Hino, A., Kanzaki, N., Jones, J. T., & Kikuchi, T. (2014b). Distribution and evolution of glycoside hydrolase family 45 cellulases in nematodes and fungi. BMC Evolutionary Biology, 14(1), 69. doi:10.1186/1471-2148-14-69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Powers, T. (2004). Nematode molecular diagnostics: from bands to barcodes. Annual Review of Phytopathology, 42(1), 367–383. doi:10.1146/annurev.phyto.42.040803.140348.

    Article  CAS  PubMed  Google Scholar 

  • Ritzema Bos, J. (1890). De bloemkoolziekte der aardbeien, veroorzaakt door Aphelenchus fragariae nov. spec. (Voorloopige mededeeling). Maanblad Natuurwetensch, 16, 107–117.

    Google Scholar 

  • Rybarczyk-Mydłowska, K., Mooyman, P., Van Megen, H., Van den Elsen, S., Vervoort, M., Veenhuizen, P., van Doorn, J., Dees, R., Karssen, G., Bakker, J., & Helder, J. (2012). SSU rDNA-based phylogenetic analysis of foliar nematodes (Aphelenchoides spp.) and their quantitative detection in complex DNA backgrounds. Phytopathology, 102(12), 120822093334003. doi:10.1094/PHYTO-05-12-0114-R.

    Google Scholar 

  • Ryss, A., McClure, M., Nischwitz, C., Dhiman, C., & Subbotin, S. (2013). Redescription of Robustodorus megadorus with molecular characterization and analysis of its phylogenetic position within the family Aphelenchoididae. Journal of Nematology, 45(4), 237–252.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Monge, A., Flores, L., Salazar, L., Hockland, S., & Bert, W. (2015). An updated list of the plants associated with plant-parasitic Aphelenchoides (Nematoda: Aphelenchoididae) and its implications for plant-parasitism within this genus. Zootaxa, 4013(2), 207–224.

    Article  PubMed  Google Scholar 

  • Schwartz, M. (1911). Die Aphelenchen der Veilchengallen un Blattfelecken an Farnen un Chrusanthemum. Arbeiten der Kaiserlichen Biologischen Anstalt fur Land- und Forstwirtschaft, 8, 303–334.

    Google Scholar 

  • Steiner, G., & Buhrer, E. M. (1932a). Miscellaneous notes on nemic diseases. Plant Disease Report, 16, 137.

    Google Scholar 

  • Steiner, G., & Buhrer, E. M. (1932b). The nonspecificity of the brown-ring symptoms in narcissus attacked by nematodes. Phytopathology, 22, 927–928.

    Google Scholar 

  • Stöver, B. C., & Müller, K. F. (2010). TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics, 11(1), 7. doi:10.1186/1471-2105-11-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sultana, T., Kim, J., Lee, S.-H., Han, H., Kim, S., Min, G.-S., Nadler, S.A. & Park, J. (2013). Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes. Evolutionary Biology, 13(12), 17p. http://www.biomedcentral.com/1471-2148/13/12/. Accessed 10 June 2014

  • Sun, L., Chi, W., Zhuo, K., Song, H., Zhang, L.-H., Liao, J., & Wang, H. (2014). The complete mitochondrial genome of Aphelenchoides besseyi (Nematoda: Aphelenchoididae), the first sequenced representative of the subfamily Aphelenchoidinae. Nematology, 16(10), 1167–1180. doi:10.1163/15685411-00002844.

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. doi:10.1093/molbev/mst197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troccoli, A., Subbotin, S. A., Chitambar, J., Janssen, T., Waeyenberge, L., Stanley, J., Duncan, L., Agudelo, P. A., Múnera Uribe, G., Franco, J., & Inserra, R. (2016). Characterisation of amphimictic and parthenogenetic populations of Pratylenchus bolivianus Corbett, 1983 (Nematoda: Pratylenchidae ) and their phylogenetic relationships with closely related species. Nematology, 1–28. doi:10.1163/15685411-00002981.

  • van den Berg, E., Yeates, G. W., Navas-Cortés, J. A., Ploeg, A. T., Subbotin, S. A., Tiedt, L. R., Roberts, P. A., & Coyne, D. L. (2013). Morphological and molecular characterisation and diagnostics of some species of Scutellonema Andrássy, 1958 (Tylenchida: Hoplolaimidae) with a molecular phylogeny of the genus. Nematology, 00, 1–27. doi:10.1163/15685411-00002714.

    Article  Google Scholar 

  • Wang, F., Li, D., Wang, Z., Dong, A., Liu, L., Wang, B., Chen, Q., & Liu, X. (2014). Transcriptomic analysis of the Rice white tip nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae). PloS One, 9(3), e91591. doi:10.1371/journal.pone.0091591.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, G. L., Kuo, T. H., Tsay, T. T., Tsai, I. J., & Chen, P. J. (2016). Glycoside hydrolase (GH) 45 and 5 candidate cellulases in Aphelenchoides besseyi isolated from Bird’s-nest fern. PloS One, 11, e0158663. doi:10.1371/journal.pone.0158663.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye, W., Giblin-Davis, R. M., Braasch, H., Morris, K., & Thomas, W. K. (2007). Phylogenetic relationships among Bursaphelenchus species (Nematoda: Parasitaphelenchidae) inferred from nuclear ribosomal and mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 43(3), 1185–1197. doi:10.1016/j.ympev.2007.02.006.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Z., Ye, W. M., Giblin-Davis, R. M., Li, D., Thomas, K. W., Davies, K. A., & Riley, I. T. (2008). Morphological and molecular analysis of six aphelenchoidoids from Australian conifers and their relationship to Bursaphelenchus (Fuchs, 1937). Nematology, 10, 663–678. doi:10.1163/156854108785787299.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the PEACE Project (Erasmus Mundus), University of Costa Rica (UCR), Ministerio de Ciencia, Tecnología y Telecomunicaciones (MICITT), and the Consejo Nacional para Investigaciones Científicas y Tecnológicas (CONICIT) for financial support. This work was also supported by a special research fund UGent 01 N02312. We thank Wilfrida Decraemer for her valuable comments on the manuscript; we also thank Dieter Slos, Xue Qing, Marvin Sánchez and Gilda Monge for their collaboration during sampling, as well as Hongmei Li (Nanjing Agric. Un., China), Lorena Flores (UCR, Costa Rica) and Nicole Viaene and Nancy De Sutter (ILVO, Belgium) for providing additional samples. We acknowledge Evelyn van Hesse (NPPO, NL) for her kindness and help when providing the pure cultures. We also thank Daniel Apolônio Silva de Oliveira for his help for model calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alcides Sánchez-Monge.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Monge, A., Janssen, T., Fang, Y. et al. mtCOI successfully diagnoses the four main plant-parasitic Aphelenchoides species (Nematoda: Aphelenchoididae) and supports a multiple origin of plant-parasitism in this paraphyletic genus. Eur J Plant Pathol 148, 853–866 (2017). https://doi.org/10.1007/s10658-016-1141-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1141-1

Keywords

Navigation