Skip to main content
Log in

Rapid and sensitive detection of Meloidogyne mali by loop-mediated isothermal amplification combined with a lateral flow dipstick

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Meloidogyne mali Itoh, Ohshima & Ichinohe, 1969 is a polyphagous root-knot nematode that infects a wide range of host plants and is subject to phytosanitary restrictions in many countries, including China. In this study, we integrated the loop-mediated isothermal amplification (LAMP) technique with visual detection by a lateral flow dipstick (LFD) and developed an accelerated LAMP-LFD method for the rapid identification of M. mali, targeting the internal transcribed spacer regions and 5.8S ribosomal DNA sequence (ITS-5.8S). The entire test could be performed within 45 min, including 35-min LAMP amplification, 5-min hybridization, and 3–5-min visualization on LFD. The detection limit of this method was 2-pg bulked M. mali gDNA per reaction, and the equivalent of 1‰ single female adult or 1% single second-stage juvenile (J2) could be detected. It is recommended that DNA is extracted from single J2 isolated from soil samples by the modified Baermann funnel method or from an adult female from galls. Based on this, the field sensitivity and specificity of this LAMP-LFD method for the detection of M. mali in field soil samples were both 100% compared to traditional microscopic observation. These results indicate that the LAMP-LFD method is rapid, sensitive, accurate, and simple, and would be applicable for the routine monitoring of phytosanitary M. mali.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam, M. A. M., Phillips, M. S., & Blok, V. C. (2007). Molecular diagnostic key for identification of single juveniles of seven common and economically important species of root-knot nematode (Meloidogyne spp.). Plant Pathology, 56, 190–197.

    Article  CAS  Google Scholar 

  • Ahmed, M., van de Vossenberg, B. T., Cornelisse, C., & Karssen, G. (2013). On the species status of the root-knot nematode Meloidogyne ulmi Palmisano & Ambrogioni, 2000 (Nematoda, Meloidogynidae). ZooKeys, 362, 1–27.

    Article  Google Scholar 

  • Alvarez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417–434.

    Article  CAS  PubMed  Google Scholar 

  • Atkins, S. D., Clark, I. M., Pande, S., Hirsch, P. R., & Kerry, B. R. (2005). The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiology Ecology, 51, 257–264.

    Article  CAS  PubMed  Google Scholar 

  • Blaxter, M. L., De Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., Vanfleteren, J. R., Mackey, L. Y., Dorris, M., Frisse, L. M., Vida, J. T., & Thomas, W. K. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature, 392, 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Braun-Kiewnick, A., Viaene, N., Folcher, L., Ollivier, F., Anthoine, G., Niere, B., Sapp, M., van de Vossenberg, B., & Kiewnick, S. (2016). Assessment of a new qPCR tool for the detection and identification of the root-knot nematode Meloidogyne enterolobii by an international test performance study. European Journal of Plant Pathology, 144, 97–108.

    Article  CAS  Google Scholar 

  • Chen, X. F., Zhou, Q. J., Duan, W. J., Zhou, C. X., Duan, L. J., Zhang, H. L., Sun, A. L., Yan, X. J., & Chen, J. (2016). Development and evaluation of a DNA microarray assay for the simultaneous detection of nine harmful algal species in ship ballast and seaport waters. Chinese Journal of Oceanology and Limnology, 34, 86–101.

    Article  CAS  Google Scholar 

  • Ding, W. C., Chen, J., Shi, Y. H., Lu, X. J., & Li, M. Y. (2010). Rapid and sensitive detection of infectious spleen and kidney necrosis virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. Archives of Virology, 155, 385–389.

    Article  CAS  PubMed  Google Scholar 

  • Gu, J. F., & He, J. (2015). First report of the apple root-knot nematode, Meloidogyne mali, infecting crape myrtle from Japan. Plant Disease, 99, 893–894.

    Article  Google Scholar 

  • Gu, J. F., He, J., Li, R. S., & Chen, X. F. (2016). Identification of Ditylenchus dipsaci from imported Medicago sativa from US. Plant Quarantine, 30, 21–26 (in Chinese).

    Google Scholar 

  • Gu, J. F., Wang, J. L., He, J., & Chen, X. F. (2013a). Morphological characters of four common Pratylenchus species. Plant Quarantine, 27, 69–71.

    Google Scholar 

  • Gu, J. F., Wang, J. L., Shao, F., Gao, F. F., & Ge, J. J. (2013b). Identification of Meloidogyne mali detected in Acer Palmatum from Japan. Plant Quarantine, 1, 43–49 (in Chinese).

    Google Scholar 

  • Holterman, M. H. M., Oggenfuss, M., Frey, J. E., & Kiewnick, S. (2012). Evaluation of high-resolution melting curve analysis as a new tool for root-knot nematode diagnostics. Journal of Phytopathology, 160, 59–66.

    Article  CAS  Google Scholar 

  • Holterman, M., Karssen, G., Van Den Elsen, S., Van Megen, H., Bakker, J., & Helder, J. (2009). Small subunit rDNA-based phylogeny of the tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology, 99, 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Hugall, A., Stanton, J., & Moritz, C. (1999). Reticulate evolution and the origins of ribosomal internal transcribed spacer diversity in apomictic Meloidogyne. Molecular Biology and Evolution, 16, 157–164.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, D. J., & Handoo, Z. A. (2009). Taxonomy, identification and principal species. In R. N. Perry, M. Moens, & J. L. Starr (Eds.), Root-knot nematodes (pp. 55–97). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Itoh, Y., Ohshima, Y., & Ichinohe, M. (1969). A root-knot nematode, Meloidogyne mail n. Sp. on apple-treefrom Japan: tylenchida: Heteroderidae. Applied Entomology and Zoology, 4, 194–202.

    Google Scholar 

  • Karssen, G., Keulen, I., Hoenselaar, T., & Heese, E. (2008). Meloidogyne ulmi: een nieuwe iepenparasiet in Nederland? Boomzorg, 2, 62–63.

    Google Scholar 

  • Kiatpathomchai, W., Jaroenram, W., Arunrut, N., Jitrapakdee, S., & Flegel, T. W. (2008). Shrimp Taura syndrome virus detection by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick. Journal of Virological Methods, 153, 214–217.

    Article  CAS  PubMed  Google Scholar 

  • Kiewnick, S., Frey, J. E., & Braun-Kiewnick, A. (2015). Development and validation of LNA-based quantitative real-time PCR assays for detection and identification of the root-knot nematode Meloidogyne enterolobii in complex DNA backgrounds. Phytopathology, 105, 1245–1249.

    Article  CAS  PubMed  Google Scholar 

  • Kiewnick, S., Wolf, S., Willareth, M., & Frey, J. E. (2013). Identification of the tropical root-knot nematode species Meloidogyne incognita. M. javanica and M. arenaria using a multiplex PCR assay. Nematology, 15, 891–894.

    Google Scholar 

  • Long, H., Liu, H., & Xu, J. H. (2006). Development of a PCR diagnostic for the root-knot nematode Meloidogyne enterolobii. Acta Physica Sinica, 36, 109–115.

    Google Scholar 

  • Meng, Q. P., Long, H., & Xu, J. H. (2004). PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. javanica and M. arenaria. Acta Physica Sinica, 34, 204–210.

    Google Scholar 

  • Mori, Y., Kanda, H., & Notomi, T. (2013). Loop-mediated isothermal amplification (LAMP): recent progress in research and development. Journal of Infection and Chemotherapy, 19, 404–411.

    Article  CAS  PubMed  Google Scholar 

  • Nagamine, K., Hase, T., & Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16, 223–229.

    Article  CAS  PubMed  Google Scholar 

  • Niemz, A., Ferguson, T. M., & Boyle, D. S. (2011). Point-of-care nucleic acid testing for infectious diseases. Trends in Biotechnology, 29, 240–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, J. H., Guo, Q. X., Jian, H., Chen, C. L., Yang, D., Liu, Q., & Guo, Y. D. (2011). Rapid detection of Meloidogyne spp. by LAMP assay in soil and roots. Crop Protection, 30, 1063–1069.

    Article  CAS  Google Scholar 

  • Niu, J. H., Jian, H., Guo, Q. X., Chen, C. L., Wang, X. Y., Liu, Q., & Guo, Y. D. (2012). Evaluation of loop-mediated isothermal amplification (LAMP) assays based on 5S rDNA-IGS2 regions for detecting Meloidogyne enterolobii. Plant Pathology, 61, 809–819.

    Article  CAS  Google Scholar 

  • Nugen, S. R., & Baeumner, A. J. (2008). Trends and opportunities in food pathogen detection. Analytical and Bioanalytical Chemistry, 391, 451–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyan, D. C., & Swinson, K. L. (2016). A method for rapid detection and genotype identification of hepatitis C virus 1-6 by one-step reverse transcription loop-mediated isothermal amplification. International Journal of Infectious Diseases, 43, 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Onkendi, E. M., Kariuki, G. M., Marais, M., & Moleleki, L. N. (2014). The threat of root-knot nematodes (Meloidogyne spp.) in Africa: a review. Plant Pathology, 63, 727–737.

    Article  Google Scholar 

  • Palmisano, A. M., & Ambrogioni, L. (2000). Meloidogyne ulmi sp. n., a root-knot nematode from elm. Nematologia Mediterranea, 28, 279–293.

    Google Scholar 

  • Powers, T. (2004). Nematode molecular diagnostics: from bands to barcodes. Annual Review of Phytopathology, 42, 367–383.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, J. J., Westerdahl, B. B., Anderson, C., & Williamson, V. M. (2006). Sensitive PCR detection of Meloidogyne arenaria, M. incognita, and M. javanica extracted from soil. Journal of Nematology, 38, 434–441.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roose-Amsaleg, C. L., Garnier-Sillam, E., & Harry, M. (2001). Extraction and purification of microbial DNA from soil and sediment samples. Applied Soil Ecology, 18, 47–60.

    Article  Google Scholar 

  • Schaad, N. W., Frederick, R. D., Shaw, J., Schneider, W. L., Hickson, R., Petrillo, M. D., & Luster, D. G. (2003). Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annual Review of Phytopathology, 41, 305–324.

    Article  CAS  PubMed  Google Scholar 

  • Sikora, R. A., & Fernández, E. (2005). Nematode parasites of vegetables. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 319–392). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Song, Z. Q., Wang, X., Lin, Y., Chi, Y. K., Ju, Y. L., & Li, H. M. (2013). Detection and quantification of Meloidogyne incognita in soil sample using real-time PCR. Acta Physica Sinica, 40, 255–260 (in Chinese).

    CAS  Google Scholar 

  • Viglierchio, D. R., & Schmitt, R. V. (1983). On the methodology of nematode extraction from field samples: Baermann funnel modifications. Journal of Nematology, 15, 438.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J. L., Gu, J. F., Gao, F. F., Zhang, H. L., He, J., Shao, F., & Chen, X. F. (2013). Identification of Meloidogyne camelliae intercepted in camelliae sp. from Japan. Plant Quarantine, 27, 70–74 (in Chinese).

    CAS  Google Scholar 

  • Wei, Y. D., Rong, W. T., Zhang, R. F., Wang, J. C., Gu, J. F., Huang, G. M., Guo, J. Z., & Sun, J. H. (2013). Variation of tail shapes of Pratylenchus penetrans from the Netherlands based on morphology and 18S ribosomal RNA gene. Plant Quarantine, 27, 71–75 (in Chinese).

    Google Scholar 

  • Wesemael, W. M., Perry, R. N., & Moens, M. (2006). The influence of root diffusate and host age on hatching of the root-knot nematodes. Meloidogyne chitwoodi and M. fallax. Nematology, 8(6), 895–902.

    Article  Google Scholar 

  • Wesemael, W. M. L., Viaene, N., & Moens, M. (2011). Root-knot nematodes (Meloidogyne spp.) in Europe. Nematology, 13, 3–16.

    Article  Google Scholar 

  • Xu, J. H., Liu, P. L., Meng, Q. P., & Long, H. (2004). Characterisation of Meloidogyne species from China using isozyme phenotypes and amplified mitochondrial DNA restriction fragment length polymorphism. European Journal of Plant Pathology, 110, 309–315.

    Article  CAS  Google Scholar 

  • Xue, B., Baillie, D. L., & Webster, J. M. (1993). Amplified fragment length polymorphisms of Meloidogyne spp. using oligonucleotide primers. Fundamental and Applied Nematology, 16, 481–487.

    Google Scholar 

  • Zhou, Q. J., Wang, L., Chen, J., Wang, R. N., Shi, Y. H., Li, C. H., Zhang, D. M., Yan, X. J., & Zhang, Y. J. (2014). Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals. Journal of Microbiological Methods, 104, 26–35.

    Article  CAS  PubMed  Google Scholar 

  • Zijlstra, C. (2000). Identification of Meloidogyne chitwoodi, M. fallax and M. hapla based on SCAR-PCR: a powerful way of enabling reliable identification of populations or individuals that share common traits. European Journal of Plant Pathology, 106, 283–290.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by the National High Technology Research and Development Program of China (863 Program) (No. 2012AA092001), Zhejiang Provincial Natural Science Foundation of China (No. LY14C180002), the Scientific Innovation Team Project of Ningbo (No. 2015C110018) and the KC Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Materials

ESM 1

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Qj., Cai, Y., Gu, Jf. et al. Rapid and sensitive detection of Meloidogyne mali by loop-mediated isothermal amplification combined with a lateral flow dipstick. Eur J Plant Pathol 148, 755–769 (2017). https://doi.org/10.1007/s10658-016-1130-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1130-4

Keywords

Navigation