Advertisement

European Journal of Plant Pathology

, Volume 148, Issue 3, pp 607–615 | Cite as

Pathogenicity of plant and soil isolates of Phytophthora parasitica on tomato and pepper

  • Amalia Boix-Ruiz
  • José Ignacio Marín-Guirao
  • Miguel de Cara-GarcíaEmail author
  • Francisco Camacho-Ferre
  • Julio César Tello-Marquina
Article

Abstract

Crown and root rot of tomato and sweet pepper can be caused by Phytophthora parasitica. In this work, 23 P. parasitica isolates from diseased pepper or tomato plants as well as 54 isolates from 23 monocrop tomato soils (from Spain and Chile) and one from a pepper soil were studied for their host–pathogen response. Results show significant host specificity for the isolates from tomato plants and tomato soils (63 of 64 isolates were unable to cause disease in pepper). None of the pepper plant/soil isolates showed pathogenicity on tomato, and only four of 14 reproduced their pathogenicity on pepper. Only one tomato isolate was pathogenic to both Solanaceae species. Two different inoculation protocols were evaluated (substrate irrigation and stem cutting). All isolates which expressed pathogenicity when stem inoculated also did it when root inoculated, but not vice-versa. Therefore, the recommended test protocol for tomato and pepper breeding programmes is that based on root inoculation by irrigation.

Keywords

Mating type Phytophthora nicotianae Monocropping Root Stem infection 

References

  1. Allagui, M. B., & Lepoivre, P. (1996). Comparaison de différentes techniques d’inoculation du piment par Phytophthora nicotianae var parasitica. Agronomie, 16, 433–440.CrossRefGoogle Scholar
  2. Allagui, M. B., & Lepoivre, P. (2000). Molecular and pathogenicity characteristics of Phytophthora nicotianae responsible for root necrosis and wilting of pepper (Capsicum annuum L.) in Tunisia. European Journal of Plant Pathology, 106, 887–894.CrossRefGoogle Scholar
  3. Apple, J. L. (1957). Pathogenic, cultural and physiological variation within Phytophthora parasitica var. nicotianae. Phytopathology, 47, 733–740.Google Scholar
  4. Bartual, R., Marsal, J. I., Carbonell, E. A., Tello, J. C., & Campos, T. (1991). Genética de la resistencia a Phytophthora capsici Leon. en pimiento. Boletín Sanidad Vegetal-Plagas, 17, 3–124.Google Scholar
  5. Boccas, B., & Zentmyer, G. A. (1976). Genetical studies with interspecific crosses between Phytophthora cinnamomi and P. parasitica. Phytopathology, 66, 79–85.CrossRefGoogle Scholar
  6. Boccas, B. (1978). La reproduction sexuelle chez les Phytophthora. Ses voies et quelques unes ses conséquences génetiques. Thèse docteur es Sciences Naturelles. France: Université Paris-Sud.Google Scholar
  7. Bonnet, J., Danan, S., Boudet, C., Barchi, L., Sage-Palloix, A. M., Caromel, B., Palloix, A., & Lefebvre, V. (2007). Are the polygenic architectures of resistance to Phytophthora capsici and P. parasitica independent in pepper? Theoretical and Applied Genetics, 115, 253–264.CrossRefPubMedGoogle Scholar
  8. Bonnet, P., Maia, N., Tello-Marquina, J. C., & Venard, P. (1978). Pouvoir pathogène de Phytophthora parasitica (Dastur): Facteurs de variabilitè et notion de spetialization parasitaire. Annales de Phytopathologie, 10, 15–29.Google Scholar
  9. Bonnet, P., Lacourt, I., Venard, P., & Ricci, P. (1994). Diversity in pathogenicity to tobacco and in elicitin production among isolates of Phytophthora parasitica. Journal of Phytopathology, 141, 25–37.CrossRefGoogle Scholar
  10. Boukema, I. W. (1983). Inheritance of resistance to foot and root caused by Phytophthora nicotianae v. Breda de Haan var. nicotianae in tomato (Lycopersicon Mill). Euphytica, 32, 103–109.CrossRefGoogle Scholar
  11. Brasier, C. M., & Hansen, E. M. (1992). Evolutionary biology of Phytophthora. Part II: phylogeny, speciation, and population structure. Annual Review Phytopathology, 30, 173–200.CrossRefGoogle Scholar
  12. De Cara, M., Pérez, M., Santos, M., Tello, J. C., Palmero, D., & Gómez, J. (2011). Inoculum sources and preservation in soils of Phytophthora parasitica from cherry tomato in continental crop areas in Southeast Spain. Acta Horticulturae, 914, 105–108.CrossRefGoogle Scholar
  13. Erwin, D. C., & Ribeiro, K. (1996). Phytophthora diseases worldwide. St. Paul: APS press.Google Scholar
  14. Faris, M. A., Sabo, F. E., Barr, D. J. S., & Lin, C. S. (1989). The systematics of Phytophthora sojae and P. megaesperma. Canadian Journal Botany, 67, 1442–1447.CrossRefGoogle Scholar
  15. Foster, J. M., & Hausbeck, M. K. (2010). Resistance of pepper to Phytophthora crown, root, and fruit rot is affected by isolate virulence. Plant Disease, 94, 24–30.CrossRefGoogle Scholar
  16. Förster, H., & Coffey, M. D. (1991). Approaches to the taxonomy of Phytophthora using polymorphisms in mitochondrial and nuclear DNA. In J. A. Lucas, R. C. Shattock, D. S. Shaws, & L. R. Cooke (Eds.), Phytophthora. Cambridge: Cambridge University Press.Google Scholar
  17. Glosier, B. R., Ogundiwin, E. A., & Sidhu, G. S. (2008). A differential series of pepper (Capsicum annum) lines delineates fourteen physiological races of Phytophthora capsici. Euphytica, 162, 23–30.CrossRefGoogle Scholar
  18. Hall, G. (1993). An integrated approach to the analysis of variation in Phytophthora nicotianae and redescription of the species. Mycological Research, 97, 559–574.CrossRefGoogle Scholar
  19. Hansen, E. M. (1991). Variation in the species of the Phytophthora megaesperma Complex. In J. A. R. C. Lucas, D. S. Shattock, L. R. Shaw, & Cooke (Eds.), Phytophthora (pp. 148–163). Cambridge, U.K: Cambridge University Press.Google Scholar
  20. Hu, J., Pang, Z., Bi, Y., Shao, J., Diao, Y., Gou, J., Liu, Y., Ly, H., Lamour, K., & Liu, X. (2013). Genetically diverse long-lived clonal lineages of Phytophthora capsici from pepper in Gansu, China. Phytopathology, 103, 920–926.CrossRefPubMedGoogle Scholar
  21. Jeffers, S. N., & Martin, S. B. (1986). Comparison of two media selective for Phytophthora and Pythium species. Plant Disease, 70, 1038–1043.CrossRefGoogle Scholar
  22. Kannaiyan, J., Ribeiro, O. K., Erwin, D. C., Nenè, Y. L. (1980). Phytophthora blight of pigeon pea in India. Mycologia,72, 169–181Google Scholar
  23. Kuan, T. L., & Erwin, D. C. (1980). Formae specialis differentiation of Phytophthora megaesperma isolates from soybean and alflafa. Phytopathology, 70, 333–338.CrossRefGoogle Scholar
  24. Matheron, M. E. N., & Matejka, J. C. (1990). Differential virulence of Phytophthora parasitica recovered from citrus and other plants to rough lemon and tomato. Plant Disease, 74, 138–140.CrossRefGoogle Scholar
  25. Mc Intyre, J. L., & Taylor, G. S. (1978). Race 3 of Phytophthora parasitica var. nicotianae. Phytopathology, 68, 35–38.CrossRefGoogle Scholar
  26. Monroy-Barbosa, A., & Bosland, P. W. (2011). Identification of novel physiological races of Phytophthora capsici causing foliar blight using the New Mexico recombinant inbred pepper lines set as a host differential. HortScience, 136(3), 205–210.Google Scholar
  27. Morales-Rodriguez, M.C. (2011). Caracterización fenotípica y molecular de Phytophthora nicotianae (Breda de Haan, 1896) de cultivos de pimiento y tomate de Extremadura. Tesis doctoral. Facultad de Ciencias. Universidad de Extremadura.Google Scholar
  28. Oelke, L. M., & Bosland, P. W. (2003). Differentiation of race specific resistance to Phytophthora root rot and foliar blight in Capsicum annuum. Journal American Society Horticultural Science, 128, 213–218.Google Scholar
  29. Oudermans, P., & Coffey, M. D. (1991). Isozyme comparision within and among worldwide sources of three morphologycaly distinct species of Phytophthora. Mycological Research, 95, 19–30.CrossRefGoogle Scholar
  30. Panabières, F., Ali, G. S., Allagui, M. B., Dalio, R. J. D., Gudmestad, N. C., Kuhn, M., Guha Roy, S., Schena, L., & Zampounis, A. (2016). Phytophthora nicotianae diseases worlwide: new knowledge of a long-recognised pathogen. Phytopathologia Mediterranea, 55, 20–40.Google Scholar
  31. Pochard, E., & Daubeze, A. M. (1980). Recherche et evaluation des composantes d’une resistance polygénique: la resistance du Piment à Phytophthora capsici. Annales de l’Amélioration des Plantes, 80, 377–398.Google Scholar
  32. Prinsloo, G. C., & Pauer, G. D. C. (1973). Die race 3 oidentifikasie van rasse van Phytophthora nicotianae (B. de Haan) Nicotianae wat in Suid Afrika voorkom. Phytophylactica, 6, 217–220.Google Scholar
  33. Ristatino, J. B., Duniway, J. M., & Marois, J. J. (1988). Influence of frequency and duration of furrow irrigation on the development of Phytophthora root rot and yield in processing tomatoes. Phytopathology, 78, 1701–1706.CrossRefGoogle Scholar
  34. Ristatino, J. B., & Duniway, J. M. (1989). Effect of preinoculation, and post-inoculation water stress on the severity of Phytophthora root rot in processing tomatoes. Plant Disease, 73, 349–352.CrossRefGoogle Scholar
  35. Satour, M. M., & Butler, E. E. (1967). A root and crown rot of tomato caused by Phytophthora capsici and P. parasitica. Phytopathology, 57, 510–515.Google Scholar
  36. Satour, M. M., & Butler, E. E. (1968). Comparative morphological and physiological studies of the progenies from intraspecific matings of Phytophthora capsici. Phytopathology, 58, 183–192.Google Scholar
  37. Sy, O., Bosland, P. W., & Steiner, R. (2005). Inheritance of phytophthora stem blight resistance as compared to phytophthora root rot and phytophthora foliar blight resistance in capsicum annum L. Horticultural Science, 130(1), 75–78.Google Scholar
  38. Sy, O., Steiner, R., & Bosland, P. W. (2008). Recombinant inbred line differential identifies race-specific resistance to Phytophthora root rot in Capsicum annuum. Phytopathology, 98, 867–870.CrossRefPubMedGoogle Scholar
  39. Tello, J. C. (1984). Enfermedades Criptogámicas en Hortalizas. Comunicaciones INIA. Madrid: Servicio de Protección Vegetal.Google Scholar
  40. Tello, J. C., Varés, F., Lacasa, A. (1991). Análisis de muestras. In M. F. Yeves et al. (Coords.), Manual de Laboratorio. Diagnóstico de Hongos, Bacterias y Nematodos Fitopatógenos. (pp. 39-48). Madird, Spain: Ministerio de Agricultura y Pesca.Google Scholar
  41. Tello, J. y Lacasa Plasencia, A. (2004). Las enfermedades de origen edáfico y su control en los pimentonales del Campo de Cartagena. Una interpretación retrospectiva del sexenio 1979–1985. In Comunidad Autónoma de la Región de Murcia (Ed.). Desinfección de Suelos en Invernaderos de Pimiento. II Jornadas sobre alternativas viables al bromuro de metilo en pimiento de invernadero. (pp. 11–26). Conserjería de Agricultura, Agua y Medio Ambiente de Murcia, Spain.Google Scholar
  42. Walker, S. J., & Bosland, P. W. (1999). Inheritance of Phytophthora root rot and foliar blight resistance in pepper. Horticultural Science, 124(1), 14–18.Google Scholar
  43. Waterhouse, G. M. (1963). Key to the species of Phytophthora de BARY. Mycological papers, 92. Kew: CMI.Google Scholar
  44. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninisky, & T. J. White (Eds.), PCR protocols. A guide to methods and applications (pp. 315–322). New York: Academic Press, Inc.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Amalia Boix-Ruiz
    • 1
  • José Ignacio Marín-Guirao
    • 1
  • Miguel de Cara-García
    • 1
    • 2
    Email author
  • Francisco Camacho-Ferre
    • 1
  • Julio César Tello-Marquina
    • 1
  1. 1.Grupo de Investigación AGR-200 “Producción Vegetal en Sistemas de Cultivo Mediterráneos”, Universidad de AlmeríaAlmeríaSpain
  2. 2.IFAPA-La MojoneraLa MojoneraSpain

Personalised recommendations