Skip to main content
Log in

Biochemical and plant nutrient alterations induced by Meloidogyne javanica and Fusarium oxysporum f.Sp.radicis lycopersici co-infection on tomato cultivars with differing level of resistance to M. javanica

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The experiment was conducted to assess plant nutrient levels and biochemical changes in tomato roots Solanum lycopersicum Mill. cultivars in response to Fusarium oxysporum f.sp. radicis lycopersici (FORL) and/or Meloidogyne javanica (RKN) infection. The enzyme activity, total sugar concentration, total phenol and protein content in tomato roots of resistant (Firenze), intermediate resistant (Colibri) and susceptible cultivar (Riogrande) at seven days post infection by FORL and RKN were measured. Tomato plants (45 days post-inoculation) were quantified by atomic spectrometry for Cu, Zn, Fe, Mn, Mg, K and Ca contents in roots. At seven days post infection, defense responses involving enzymes were observed in tomato roots. Peroxidase (POX), catalase (CAT), polyphenoloxidase (PPO) and superoxide dismutase (SOD) enzymes activities were enhanced after pathogen infection and this increase was greater with synergetic infection by RKN and FORL and more in the resistant cultivar when compared to the susceptible one. Total protein content, sugar concentration and total phenol content variations were correlated to pathogen co-infection and not to the resistance level of the tomato. It was concluded that synergetic infection by FORL and RKN induced plant defense response especially in resistant cultivars. Those responses diverged with single or dual infection by pathogens and with resistance level on host plant. The nematode-fungi disease complex had great impact on unbalancing nutrients contents in roots by reducing significantly (P < 0.05) the contents of Cu, Zn, Fe, Mn, Mg and K. However, The Ca content was increased in roots. All tomato cultivars responded similarly on changing nutrient content independently with resistance level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrios N.G. (2005). Plant Pathology, 5th ed., Elsevier-Academic Press, p. 635.

  • Bajaj, K. L., & Mahajan, R. (1977). Phenolic compounds in tomato susceptible and resistant to Meloidogyne incognita (Kofoid et white). Chitwood. Nematol. Mediterr., 5, 329–333.

    Google Scholar 

  • Baker CJ & EW Orlandi (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol.33:299–321.

  • Blevins, D. G., Dropkin, V. H., & Luedders, V. D. (1995). Macronutrient uptake, translocation, and tissue concentration of soybeans infested with the soybean cyst nematode and elemental composition of cysts isolated from roots. Journal of Plant Nutrition, 18, 579–591.

    Article  CAS  Google Scholar 

  • Benhamou, N., Rey, P., Cherif, M., Hockenhull, J., & Tirilly, Y. (1997). Treatment with the mycoparasite Pythium oligandrum triggers induction of defence-related reactions in tomato roots when challenged with Fusarium oxysporum f.Sp. radicis-lycopersici. Phytopathology, 87, 108–121.

    Article  CAS  PubMed  Google Scholar 

  • Bird, D. M., Opperman, C. H., & Williamson, V. M. (2008). Plant infection by root-knot nematode. In R. H. Berg & C. G. Taylor (Eds.), Cell biology of plant nematode parasitism (pp. 1–13). Berlin: Springer Verlag.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for quantitation or microgram quantities of protein utilzing the principle of protein-dye hinding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Bolouri Moghaddam, M.R.& W. Van den Ende (2012) Sugars and plant innate immunity. Journal of Experimental Botany 63, 3989–3998.

  • Claiborne, A. (1985). Catalase activity. In R. A. GREENWALD (Ed.), Handbook of methods for Oxygene radical research (pp. 283–284). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Dixon, R.A., Harrison, M.J. & C.J. Lamb, (1994) Early events in the activation of plant defense responses. Annu. Rev. Phytopathol. 32, 479 ± 501.

  • Evans, I., Solber, E., & Huber, D. M. (2007). Copper and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 177–188). St. Paul, MN, USA: APS Press.

    Google Scholar 

  • Farahat, A. A., Alsayed, A. A., El-Beltagi, H. S., & Mahfoud, N. M. (2012). Impact of organic and inorganic fertilizers on nematode reproduction and biochemical alterations on tomato. Not. Sci. Biol., 4(1), 48–55.

    Google Scholar 

  • Ferri, M., Righetti, L., & Tassoni, A. (2011). Increasing sucrose concentrations promote phenylpropanoid biosynthesis in grapevine cell cultures. Journal of Plant Physiology, 168, 189–195.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Limones, C., Hervas, A., Navas-Cortes, J.A., Jimenez-Diaz, R.M. & M. Tena (2002) Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f.sp. ciceris. Physiol. Mol. Plant Pathol., 61: 325–337.

  • Goncalves, W., Mazzafera, P., Ferraz, L. C. C. B., Silvarolla, M. B., & de Lima, M. M. A. (1995). Biochemical basis of coffee tree resistance to Meloidogyne incognita. Plantations, recherche, developpement, 2, 54–58.

    CAS  Google Scholar 

  • Hajji, L., Regaieg, H., M’Hamdi-Boughalleb, N., & Horrigue-Raouani, N. (2016). Studies on disease complex incidence of Meloidogyne javanica and Fusarium oxysporum f.Sp. lycopersici on resistant and susceptible tomato cultivars. Journal of Agricultural sciences and food technology, 2(4), 41–48.

    Google Scholar 

  • Hasan, N., & Saxena, S. K. (1997). Effect of inoculating tomato with root-knot nematode, Meloidogyne incognita on phenolic content and polyphenol oxidase activity. Physiol. Host pathogen interact. Curr Trends Life Sci, 6, 199–203.

    Google Scholar 

  • Hibar, K., Edel-Herman, V., Steinberg, C., Gautheron, N., Daami-Remadi, M., Alabouvette, C., & El Mahjoub, M. (2007). Genetic diversity of Fusarium oxysporum populations isolated from tomato plants in Tunisia. Journal of Phytopathology, 155, 136–142.

    Article  CAS  Google Scholar 

  • Hofmann, J., Szakasits, D., Blöchl, A., Sobczak, M., Daxböck-Horvath, S., Golinowski, W., Bohlmann, H., & Grundler, F. M. W. (2008). Starch serves as carbohydrate storage in nematode-induced syncytia. Plant Physiology, 146, 228–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann, J., Wieczorek, K., BlöChl, A., & Grundler, F. M. W. (2007). Sucrose supply to nematode-induced syncytia depends on the apoplasmic and the symplasmic pathway. Journal of Experimental Botany, 58, 1591–1601.

    Article  CAS  PubMed  Google Scholar 

  • Horrigue-Raouani N. (2003) Variabilité de la relation hôte parasite dans le cas des Meloidogyne spp. (Nematoda: Meloidogynidae). Thèse de docteur d’état. Université Tunis-El Manar, Faculté des Sciences de Tunis, Tunisie, pp. 222.

  • Huber DM (1978) Disturbed mineral nutrition. In : James G. Horsfall (ed). Plant disease an advanced treatise: how plants suffer from disease. Academic press, New York, p: 163–178.

  • Huber, D. M., & Graham, R. D. (1999). The role of nutrition in crop resistance and tolerance to diseases. In Z. Rengel (Ed.), Mineral nutrition of crops: fundamental mechanisms and implications (pp. 169–206). New York: Food Products Press.

    Google Scholar 

  • Huber, D., Romheld, V., & Weinmann, M. (2012). Relationship between nutrition, plant diseases and pests. In P. Marschner (Ed.), Marschner’s mineral nutrition of higher plants (third ed., pp. 283–298). USA: Elsevier.

    Chapter  Google Scholar 

  • Hue, N. V., R. Uchida, & M. C. Ho (2000) Sampling and analysis of soils and plant tissues. Pp. 23–30 in J. A. Silva and R. S. Uchida, eds. Plant nutrient management in Hawaii’s soils. Honolulu, HI: College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa.

  • Hussey, R. S. & V. M. Williamson (1996) Physiological and molecular aspects of nematode parasitism. Pp. 87–108 in K. R. Barker, G. A. Pederson, and G. L. Windham, eds. Plant and nematode interactions. Madison, WI: American Society of Agronomy.

  • Hutcheson, S. W. (1998). Current concepts of active defense in plants. Annual Review of Phytopathology, 36, 59–90.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y., Lee, C., Kim, H., & Lee, H. (2004). Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi. Journal of Agricultural and Food Chemistry, 52, 6096–6100.

    Article  CAS  PubMed  Google Scholar 

  • Kuc, J., & Preisig (1984). Fungal regulation of disease resistance mechanisms in plants. Mycologia, 76, 767–784.

    Article  CAS  Google Scholar 

  • Laloi, C., Apel, K., & Danon, A. (2004). Reactive oxygen signalling: the latest news. Current Opinion in Plant Biology, 7, 323–328.

    Article  CAS  PubMed  Google Scholar 

  • Lebeda, A., Luhova, L., Sedlarova, M., & Jancova, D. (2001). The role of enzymes in plant–fungal pathogens interactions. J. Plant Dis. Protect., 108, 89–111.

    CAS  Google Scholar 

  • Leeman, M., den Ouden, F. M., van Pelt, J. A., et al. (1996). Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology, 86, 149–155.

    Article  CAS  Google Scholar 

  • Luc, M., Sikora, A. & J. Bridge (2005) Plant parasitic nematodes in subtropical and tropical agriculture. CABI, Wallingford, UK, 2nd edition, 871p.

  • Mayer, A. M. (2006). Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry, 67, 2318–2331.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, A. M., Harel, E., & Shaul, R. B. (1965). Assay of catechol oxidase: a critical comparison of methods. Phytochem., 5, 783–789.

    Article  Google Scholar 

  • Melillo, M. T., Bleve-Zacheo, T., & Zacheo, G. (1992). Role of peroxidase and esterase isoenzymes in pea roots infected with Heterodera goettingiana. Nematologia Mediterranea, 20, 171–179.

    Google Scholar 

  • Molinari, S., & Abd-Elgawad, M. M. (2007). Catalase inhibition as a biochemical marker of resistance to root-knot nematodes in tomato. Nematologia Mediterranea, 35, 237–242.

    Google Scholar 

  • Nagesh, M., Dasgupta, D.S., & Anil Sirohi (1998) Relationship between indole acetic acid oxidase, Polyphenol oxidase, indoleacetic acid and response of tomatoes to Meloidogyne incognita infection. Pest management in Horticultural Ecosystem.4: 111.

  • Nayak, D. K., & Mohanty, K. C. (2010). Biochemical changes in Brinjal induced by root-knot nematode, Meloidogyne Incognita. Indian Journal of Nematology, 40(1), 43–47.

    Google Scholar 

  • Niebel, A., Heungens, K., Barthels, N., Ind, D., Van Montagu, M., & Gheysen, G. (1995). Characterization of a pathogen-induced potato catalase and its systemic expression upon nematode and bacteria1 infection. Molecular Plant-Microbe Interactions, 8, 371–378.

    Article  CAS  PubMed  Google Scholar 

  • Oka, Y., Chet, I., & Spigel, Y. (1997). Are pathogenesis-related proteins induced by Meloidogyne javanica or Heterodera avenae invasion. Journal of Nematology, 29, 501–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozbay, N., & Newman, S. (2004). Fusarium crown and root rot of tomato and control methods. Plant Pathology Journal, 3, 9–18.

    Article  Google Scholar 

  • Prabhu, A. S., Fageria, N. K., Berni, R. F., & Rodrigues, F. A. (2007). Phosphorus and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 45–55). St. Paul, MN: APS Press.

    Google Scholar 

  • Parmar, P., & Subramanian, R. B. (2012). Biochemical alteration induced in tomato (lycopersicum esculentum) in response to Fusarium oxysporum f.sp. lycopersici. AJBAS, 4, 186–191.

    CAS  Google Scholar 

  • Patel, B.A., Patel, D.J., Patel, R.G. & Talati J.G (2001) Biochemical changes induced by infection of Meloidogyne spp. in chickpea. Intern. Chickpea Pigeonpea Newslett., 8: 13–14.

  • Reddy, K. P., Subhani, S. M., Khan, P. A., & Kumar, K. B. (1995). Effect of light and benzyladenine on dark treated graving rice (Oryza sativa) leaves - changes in peroxidase activity. Plant & Cell Physiology, 26, 987–994.

    Article  Google Scholar 

  • Rekah, Y., Shtienberg, D., & Katan, J. (1999). Spatial distribution and temporal development of fusarium crown and root-rot of tomato and pathogen dissemination in field soil. Phytopathology, 89, 831–839.

    Article  CAS  PubMed  Google Scholar 

  • Schields, R., & Burnett, W. (1960). Determination of protein-bound carbohydrate in serum by a modified anthrone method. Analytical Chemistry, 32, 885–886.

    Article  Google Scholar 

  • Shukla, Y. M., & Chakraborty, M. K. (1988). Biochemical studies on response of tobacco and tomato plants to root knot nematode infection. Tobacco Research, 14(1), 43–50.

    CAS  Google Scholar 

  • Siddiqui, I. A., Shaukat, S. S., & Hamid, M. (2002). Role of zinc in rhizobacteriamediated suppression of root-infecting fungi and root-knot nematode. Journal of Phytopathology, 150, 569–575.

    Article  CAS  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic – phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Strange, R. N. (2003). Introduction to plant pathology. New York: Wiley.

    Google Scholar 

  • Taiz, L., & Zeiger, E. (2002). Plant physiology (3rd ed.290 pp). Sunderland, MA, USA: Sinaur Associates Inc.

    Google Scholar 

  • Tebo, B. M., Ghiorse, W. C., van Waasbergen, L. G., Seiring, P. L., & Caspi, R. (1997). Bacterially mediated mineral transformation: insights into manganese (II) oxidation from molecular genetic and biochemical studies. In J. F. Banfield & K. H. Nealson (Eds.), Geomicrobiology: interactions between microbes and minerals v 35 (pp. 225–260). Washington, DC: Mineralogical Society of America.

    Google Scholar 

  • Thompson, I. A., & Huber, D. M. (2007). Manganese and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 139–154). American Phytopathological Society: St. Paul, MN.

    Google Scholar 

  • Tománková, K., Luhová, L., Petřivalsky, M., Peč, P., & Lebeda, A. (2006). Biochemical aspects of reactive oxygen species formation in the interaction between Lycopersicon spp. and Oidium neolycopersici. Physiol. Mol. Plant Pathology, 68(1–3), 1–11.

    Google Scholar 

  • Vanderspool, M. C., Kaplan, D. T., McCollum, T. G., & Wodzinski, R. J. (1994). Partial characterization of cytosolic superoxide dismutase activity in the interaction of Meloidogyne incognita with two cultivars of Glycine max. Journal of Nematology, 26, 422–429.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veresoglou, S. D., Barto, E. K., Menexes, G., & Rillig, M. C. (2013). Fertilization affects the severity of disease caused by fungal plant pathogen. Plant Pathology, 62, 961–969.

    Article  Google Scholar 

  • Xing, Z., Wang, Y., Feng, Z., & Tan, Q. (2008). Effect of different packaging films on postharvest quality and selected enzyme activities of hypsizygus marmoreus mushrooms. Journal of Agricultural and Food Chemistry, 56, 11838–11844.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X. M., Xu, K., Yu, Q., & Zhang-Xiaoyan (2008). The relationship between resistance to Meloidogyne incognita and phenylpropanes metabolism in roots of eggplant root- stock. Acta Physica Sinica, 35(1), 43–46.

    CAS  Google Scholar 

  • Zacheo, G., Orlando, C., & Belve-Zacheo, T. (1993). Characterization of anionic peroxidases in tomato isoline infected by Meloidogyne incognita. Journal of Nematology, 25(2), 249–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zacheo, G., Guida G., Blevee-Zacheo T. & M.T. Melillo (1991) Effect of paraquat on superoxide dismutase and catalase activity of tomato plants susceptible and resistant to Meloidogyne incognita. Nematol.medtit., 19: 155–162.

  • Zacheo, G., & Bleve-Zacheo, T. (1988). Involvement of superoxide dismutases and superoxide radicals in the susceptibility and resistance of tomato plants to Meloidogyne incognita attack. Physiological and Molecular Plant Pathology, 32, 313–322.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajji Lobna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobna, H., Aymen, E.M., Hajer, R. et al. Biochemical and plant nutrient alterations induced by Meloidogyne javanica and Fusarium oxysporum f.Sp.radicis lycopersici co-infection on tomato cultivars with differing level of resistance to M. javanica . Eur J Plant Pathol 148, 463–472 (2017). https://doi.org/10.1007/s10658-016-1104-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1104-6

Keywords

Navigation