Skip to main content
Log in

Pseudopithomyces chartarum associated with wheat seeds in Argentina, pathogenicity and evaluation of toxigenic ability

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Argentina is one of the top 10 world producers and exporters of wheat. In routine surveys of wheat (Triticum aestivum L.) in Buenos Aires Province, Argentina, a new disease was observed in 2012 on seeds of wheat cv. Buck Meteoro. Symptomatic grains (black points) and leaves (chlorosis and spots) were collected during the spring of that year. The objectives of the present study were to identify the causal agent, to investigate its pathogenicity in relation to nine wheat cultivars and to identify the secondary metabolites produced by fungus. Symptomatic grains were plated on potato dextrose agar (PDA). Morphological characterization of colonies and sequencing of the ITS region after DNA extraction identified it as Pseudopithomyces chartarum. For pathogenicity tests, two different isolates, P221 and P224, were inoculated on seedlings of nine wheat cultivars, which showed different disease symptoms, % of grain germination (GG), % of grain discoloration (GD) and % of weak seedlings (WS), suggesting different levels of response against Pseudopithomyces chartarum. Particularly B. Meteoro, Buck Guapo and Klein Proteo cultivars demonstrated major infection tolerance for GD and WS. In contrast, Sy 100 and Klein Pantera were most affected showing weakness, chlorosis, or reduced length of coleoptile, and 50% of necrotic symptoms. Pseudopithomyces chartarum isolates produced secondary metabolites including alternariol, alternariol mono-methyl ether, altertoxin I and altertoxine II. The fungus is a new pathogen of wheat in Argentina that can cause diseases on different cultivars as well as produce mycotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Amaral, R. E. M., Nazário, W., & Andrade, S.O. (1976). Ocorrência do fungo Pithomyces chartarum (Berk. & Curt.) Ellisem grãos e forrageiras no Brasil. Proceedings of the Congreso Brasileiro de Fitopatología Campinas, San Pablo, Brazil, p. 82 (Abstr.).

  • Ariyawansa, H., Hyde, K., Jayasiri, S., & Chen, X. H. (2015). Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 27–274. doi:10.1007/s13225-015-0346-5.

  • Bezille, P., Braun, J. P., & LeBars, J. (1984). First identification of facial eczema in Europe: epidemiological, clinical and biological aspects. Recueil de Medecine Veterinaire, 160, 339–347.

    Google Scholar 

  • Collin, R. G., Odriozola, E., & Towers, N. R. (1998). Sporidesmin production by Pithomyces chartarum isolates from Australia, Brazil, New Zealand and Uruguay. Mycological Research, 102, 163–166.

    Article  CAS  Google Scholar 

  • Di Renzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2012). InfoStat vers. 2012. InfoStat group, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba: Argentina.

  • Dingley, J. (1962). Pithomyces chartarum, its occurrence morphology, and taxonomy. New Zealand Journal of Agricultural Research, 5, 49–61.

    Article  Google Scholar 

  • EFSA (2011). Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. European Food Safety Authority. EFSA Journal, 9(19), 2407.

    Google Scholar 

  • Eken, C., Jochum, C. C., & Yuen, G. Y. (2006). First report of leaf spot of smooth bromegrass caused by Pithomyces chartarum in Nebraska. Plant Disease, 90, 108.

    Article  Google Scholar 

  • Farr, D. F., & Rossman, A. Y. (2010). Fungal databases, systematic mycology and microbiology laboratory. USDA-ARS. http://nt.ars-grin.gov/fungaldatabases. Accessed 23 September 2015.

  • Farr, D. F., Rossman, A. Y., Palm, M. E., McCray, E. B. (2007). Fungal databases, systematic botany and mycology laboratory, ARS, USDA. Retrieved March 5, 2007, from http://nt.arsgrin.gov/fungaldatabases/.

  • Houbraken, J., Frisvad, J. C., & Samson, R. A. (2006). Sporidesmin production by Pithomyces. Proceedings of the 8th International Mycological Congress, Cairns, Australia, p. 20 (Abstr.).

  • ISTA (1993). International rules for seed treating. International Seed Testing Association, 13, 200–520.

    Google Scholar 

  • Jonardhanan, K. K. (2002). Diseases of major medicinal plants. Daya Publ. House, Delhi: India.

    Google Scholar 

  • Licoff, N., Khalloub, P., Diab, S., Cantón, G., Odeón, A., & Odriozola, E. (2008). Evaluación toxicológica de Pithomyces chartarum en Argentina. Revista de Medicina Veterinaria, 89, 9–12.

    Google Scholar 

  • Ponappa, K. M. (1977). New record of fungi associated with Cannabis sativa. Journal of Mycology and Plant Pathology, 7, 139.

    Google Scholar 

  • Russomanno, O. M. R., Amaral, R. E. M., Malavolta, V. M. A., Alcantara, V. B. G., & Schammass, E. A. (1985). Ocorrência do fungo Pithomyces chartarum (Berk. & Curt.) M. B. Ellis em forrageiras pastoreadas por bovinos. Revista de Agricultura Piracicaba, 60, 249–265.

    Google Scholar 

  • Samson, R. A., Hoekstra, E. S., Frisvad, J. C., & Filtenborg, O. (Eds.) (2002). Introduction to food- and air borne fungi (6th ed.). Utrecht: Centraal Bureau voor Schimmelcultures.

    Google Scholar 

  • Stenglein, S. A., & Balatti, P. A. (2006). Genetic diversity of Phaeoisariopsis griseola in Argentina as revealed by virulence and molecular markers. Physiological and Molecular Plant Pathology, 68, 158–167.

    Article  CAS  Google Scholar 

  • Tančinová, D., & Labuda, R. (2009). Fungi on wheat bran and their toxinogenity. Annals of Agricultural and Environmental Medicine, 16, 325–331.

    PubMed  Google Scholar 

  • Tóth, B., Csosz, M., Dijksterhuis, J., Frisvad, J. C., & Vagra, J. (2007). Pithomyces chartarum as a pathogen of wheat. Journal of Plant Pathology, 89, 405–408.

    Google Scholar 

  • Varga, Z., & Fischl, G. (2006). Pathogenic fungal species isolated from leaves and seeds of smooth brome (Bromus inermis Leyss.). Communications in Agricultural and Applied Biological Sciences, 71, 1103–1108.

    PubMed  Google Scholar 

  • Vishwanath, V., Sulyok, M., Labuda, R., Bicker, W., & Krska, R. (2009). Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 395, 1355–1372.

    Article  CAS  PubMed  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes forphylogenetics. In M. A. Innis, D. H. Gelfand, J. Sninsky, & T. J. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315–322). Academic Press, San Diego, CA: USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María V. Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perelló, A., Aulicino, M., Stenglein, S.A. et al. Pseudopithomyces chartarum associated with wheat seeds in Argentina, pathogenicity and evaluation of toxigenic ability. Eur J Plant Pathol 148, 491–496 (2017). https://doi.org/10.1007/s10658-016-1093-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1093-5

Keywords

Navigation