Skip to main content

In vitro and field efficacy of three fungicides against Fusarium bulb rot of garlic


Fusarium proliferatum has been identified as the main causal agent of bulb rot of garlic (Allium sativum L.). This disease occurs after the drying process and can rot almost 30 % of the bulbs. Few studies are available regarding the effectiveness of chemical treatments to reduce F. proliferatum incidence in garlic. The efficacy of three commercial fungicides of different chemical groups to reduce seven strains of F. proliferatum mycelial growth was tested in vitro. These three fungicides were also evaluated by foliar spreading of aqueous suspension in a field crop. Fluopyram 20 % + tebuconazole 20 % and tebuconazole 50 % + trifloxystrobin 50 % were highly effective at reducing mycelial growth in F. proliferatum with EC50 values <2 ppm. In general, the effectiveness of the fungicides was enhanced with increasing dosage. Our results indicate that the fungicides evaluated in this study may lead to a risk of resistance appearing in F. proliferatum at low concentrations and this risk is maintained at higher doses for the fungicide dimethomorph 7.2 % + pyraclostrobin 4 %. Although several of the fungicides affected in vitro mycelial growth of F. proliferatum, as a part of an strategy to measure the efficacy of resistance management it is necessary to monitor the ongoing efficacy of fungicides under commercial conditions. All fungicidal treatments tested in field application failed to control garlic bulb rot during storage.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Amini, J., & Sidovich, D. (2010). The effects of fungicides on Fusarium oxysporum f. Sp. lycopersici associated with fusarium wilt of tomato. Journal of Plant Protection Research, 50(2), 172–178.

    CAS  Article  Google Scholar 

  2. Amiri, A., Heath, S. M., & Peres, N. A. (2014). Resistance to fluopyram, fluxapyroxad, and penthiopyrad in Botrytis cinerea from strawberry. Plant Disease, 98(4), 532–539.

    CAS  Article  Google Scholar 

  3. Avenot, H. F., Thomas, A., Gitaitis, R. D., Langston Jr., D. B., & Stevenson, K. L. (2012). Molecular characterization of boscalid- and penthiopyrad-resistant isolates of Didymella bryoniae and assessment of their sensitivity to fluopyram. Pest Management Science, 68(4), 645–651.

    CAS  Article  PubMed  Google Scholar 

  4. Brent, K. J., & Hollomon, D. W. (2007) Fungicide resistance in crop pathogens: how can it be managed?. FRAC Monograph No. 1, Brussels. Crop Life International.

  5. Chen, Y., Zhang, A. F., Gao, T. C., Zhang, Y., Wang, W. X., & Ding, K. J. (2012). Integrated use of pyraclostrobin and epoxiconazole for the control of Fusarium head blight of wheat in Anhui Province of China. Plant Disease, 96(10), 1495–1500.

    CAS  Article  Google Scholar 

  6. Dubos, T., Pasquali, M., Pogoda, F., Hoffmann, L., & Beyer, M. (2011). Evidence for natural resistance towards trifloxystrobin in fusarium graminearum. European Journal of Plant Pathology, 130, 239–248.

    Article  Google Scholar 

  7. Dubos, T., Pasquali, M., Pogoda, F., Casanova, A., & Hoffmann, L. (2013). Differences between the succinate dehydrogenase sequences of isopyrazam sensitive Zymoseptoria tritici and insensitive fusarium graminearum strains. Pesticide Biochemistry and Physiology, 105(1), 28–35.

    CAS  Article  PubMed  Google Scholar 

  8. Dugan, F., Hellier, B., & Lupien, S. (2003). First report of Fusarium proliferatum causing rot of garlic bulbs in North America. Plant Pathology, 52(3), 426–426.

    Article  Google Scholar 

  9. Dugan, F., Hellier, B., & Lupien, S. (2007). Pathogenic fungi in garlic seed cloves from the United States and China, and efficacy of fungicides against pathogens in garlic germplasm in Washington state. Journal of Phytopathology, 155(7–8), 437–445.

    CAS  Article  Google Scholar 

  10. FAOSTAT (FAO Statistical Division) (2013). Accessed 14 April 2016.

  11. Fought, L., Musson, G. H., & H. Young (2011). Fluopyram fungicides for the control of diseases of horticultural and row crops. (pp. S54). Phytopathology, 101: S54.

  12. FRAC (Fungicide Resistance Action Committee). (2016). FRAC Code List 2016: Fungicides sorted by mode of action.

  13. Gerlach W.L. & Nirenberg H. (1982). The genus Fusarium. A pictorial atlas. Mitt. Biol Bundesanst. Land-Forstwirtsch. Berlin-Dahlen 209, 1–406.

  14. IGP Ajo Morado delas Pedroñeras. (2016). Accessed 7 September 2016.

  15. Ivić, D., Sever, Z., & Kuzmanovska, B. (2011). In vitro sensitivity of Fusarium graminearum, F. avenaceum and F. verticillioides to carbendazim, tebuconazole, flutriafol, metconazole and prochloraz. Pesticidi i fitomedicina, 26(1), 35–42.

    Article  Google Scholar 

  16. Leslie, J. F., & Summerell, B. A. (2006). The fusarium laboratory manual. Ames, Iowa, USA: Blackwell Publishing.

    Book  Google Scholar 

  17. Maitlo, S., Syed, R., Rustamani, M., Khuhro, R., & Lodhi, A. (2014). Comparative efficacy of different fungicides against fusarium wilt of chickpea (Cicer arietinum L.). Pakistan Journal of Botany, 46(6), 2305–2312.

    Google Scholar 

  18. Marin, P., de Ory, A., Cruz, A., Magan, N., & González-Jaen, M. T. (2013). Potential effects of environmental conditions on the efficiency of the antifungal tebuconazole controlling Fusarium verticillioides and Fusarium proliferatum growth rate and fumonisin biosynthesis. International Journal of Food Microbiology, 165(3), 251–258.

    CAS  Article  PubMed  Google Scholar 

  19. Moharam, M. M. A., Farrag, E. S. H., & Mohamed, M. D. A. (2013). Pathogenic fungi in garlic seed cloves and first report of Fusarium proliferatum causing cloves rot of stored bulbs in upper Egypt. Archives of Phytopathology and Plant Protection, 46(17), 2096–2103.

    Article  Google Scholar 

  20. Müllenborn, C., Steiner, U., Ludwig, M., & Oerke, E. C. (2008). Effect of fungicides on the complex of Fusarium species and saprophytic fungi colonizing wheat kernels. European Journal of Plant Pathology, 120(2), 157–166.

    Article  Google Scholar 

  21. Nelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: an illustrated manual for identification. University Park, PA, USA: Pennsylvania State University Press.

    Google Scholar 

  22. Palmero, D., De Cara, M., Iglesias, C., Moreno, N., Gonzalez, M. T., & Tello, J. (2010). First report of Fusarium proliferatum causing rot of garlic bulbs in Spain. Plant Disease, 94(2), 277.

    Article  Google Scholar 

  23. Palmero, D., de Cara, M., Gálvez, L., & Tello, J. (2011). Effect of pre-sowing treatment on postharvest garlic rot caused by Fusarium proliferatum. In International Congress of Postharvest Pathology, Lleida, Spain (pp. 156).

  24. Palmero, D., de Cara, M., Nosir, W., Gálvez, L., Cruz, A., & Woodward, S. (2012). Fusarium proliferatum isolated from garlic in Spain: identification, toxigenic potential and pathogenicity on related allium species. Phytopathologia Mediterranea, 51(1), 207–218.

    CAS  Google Scholar 

  25. Palmero, D., Galvez, L., Garcia, M., Gil, J., & Benito, S. (2013). The effects of storage duration, temperature and cultivar on the severity of garlic clove rot caused by Fusarium proliferatum. Postharvest Biology and Technology, 78, 34–39.

    Article  Google Scholar 

  26. Pasquali, M., Spanu, F., Scherm, B., Balmas, V., Hoffmann, L., Hammond-Kosack, K. E., Beyer, M., & Migheli, Q. (2013). FcStuA from Fusarium culmorum controls wheat foot and root rot in a toxin dispensable manner. PloS One, 8(2), e57429.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Salvalaggio, A. E., & Ridao, A. C. (2013). First report of Fusarium proliferatum causing rot on garlic and onion in Argentina. Plant Disease, 97(4), 556.

    Article  Google Scholar 

  28. Sankar, N. R., & Babu, G. P. (2012). First report of Fusarium proliferatum causing rot of garlic bulbs (Allium sativum) in India. Plant Disease, 96(2), 290.

    Article  Google Scholar 

  29. Schwartz, H. F., & Mohan, S. K. (2008). Compendium of onion and garlic diseases and pests (127 pp). Ed. APS Press.

  30. Seefelder, W., Gossmann, M., & Humpf, H. U. (2002). Analysis of fumonisin B1 in Fusarium proliferatum infected asparagus spears and garlic bulbs from Germany by liquid chromatography-electrospray ionization mass spectrometry. Journal of Agricultural and Food Chemistry, 50(10), 2778–2781.

    CAS  Article  PubMed  Google Scholar 

  31. Stankovic, S., Levic, J., Petrovic, T., Logrieco, A., & Moretti, A. (2007). Pathogenicity and mycotoxin production by fusarium proliferatum isolated from onion and garlic in Serbia. European Journal of Plant Pathology, 118(2), 165–172.

    CAS  Article  Google Scholar 

  32. Tonti, S., Prà, M. D., Nipoti, P., Prodi, A., & Alberti, I. (2012). First report of Fusarium proliferatum causing rot of stored garlic bulbs (Allium sativum L.) in Italy. Journal of Phytopathology, 160(11), 761–763.

    Article  Google Scholar 

  33. TRADEMAP (Trade Statistics for International Business Development). (2015).|724||||070320|||6|1|1|2|2|1|2|1|1. Accessed 14 April 2016

  34. Vyas, S. C. (1988). Nontarget effects of agricultural fungicides. London, UK: CRC Press.

    Google Scholar 

Download references


This research was supported by the Garlic Cooperative Coopaman SCL (Spain) Project P1520290111.

Author information



Corresponding author

Correspondence to Daniel Palmero Llamas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patón, L.G., Marrero, M.D.R. & Llamas, D.P. In vitro and field efficacy of three fungicides against Fusarium bulb rot of garlic. Eur J Plant Pathol 148, 321–328 (2017).

Download citation


  • Fusarium proliferatum
  • Mycelial growth
  • Garlic bulb rot