Skip to main content
Log in

A TaqMan real-time PCR assay for Rhizoctonia cerealis and its use in wheat and soil

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Rhizoctonia cerealis causes sharp eyespot in cereals and the pathogen survives as mycelia or sclerotia in soil. Real-time Polymerase Chain Reaction (qPCR) assays based on TaqMan chemistry are highly suitable for use on DNA extracted from soil. We report here the first qPCR assay for R. cerealis using TaqMan primers and a probe based on a unique Sequence Characterised Amplified Region (SCAR). The assay is highly specific and did not amplify DNA from a range of other binucleate Rhizoctonia species or isolates of anastomosis groups of Rhizoctonia solani. The high sensitivity of the assay was demonstrated in soils using a bulk DNA extraction method where 200 μg sclerotia in 50 g of soil were detected. DNA of the pathogen could also be amplified from asymptomatic wheat plants. Using the assay on soil samples from fields under different crop rotations, R. cerealis was most frequently detected in soils where wheat was grown or soil under pasture. It was detected least frequently in fields where potatoes were grown. This study demonstrates that assays derived from SCAR sequences can produce specific and sensitive qPCR assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alaeddini, R. (2012). Forensic implications of PCR inhibition—a review. Forensic Science International: Genetics, 6, 297–305.

    Article  CAS  Google Scholar 

  • Boine, B., Renner, A. C., Zellner, M., & Nechwatal, J. (2014). Quantitative methods for assessment of the impact of different crops on the inoculum density of Rhizoctonia solani AG2-2IIIB in soil. European Journal of Plant Pathology, 140, 745–756.

    Article  Google Scholar 

  • Broders, K. D., Parker, M. L., Melzer, M. S., & Boland, G. J. (2014). Phylogenetic diversity of Rhizoctonia solani associated with canola and wheat in Alberta, Manitoba, and Saskatchewan. Plant Disease 98(12), 1695–1701.

  • Brown, M.B., Woodhall, J.W., Mooney, S.J., & Ray, R.V. (2014). The occurrence and population dynamics of Rhizoctonia solani in soil of winter wheat. Proeceedings of the Dundee Conference. Crop Protection in Northern Britain 2014, Dundee, 25-26 February 2014, 107–112

  • Budge, G. E., Shaw, M. W., Colyer, A., Pietravalle, S., & Boonham, N. (2009). Molecular tools to investigate Rhizoctonia solani distribution in soil. Plant Pathology, 58, 1071–1080.

    Article  CAS  Google Scholar 

  • Chen, H. G., Fang, Z., De, H. L., Lin, L., & Wang, Y. Z. (2005). PCR based detection of Rhizoctonia cerealis. Acta Physica Sinica, 32, 261–265.

    CAS  Google Scholar 

  • Clarkson, J. D. S., & Cook, R. J. (1983). Effect of sharp eyespot (Rhizoctonia cerealis) on yield losses in winter wheat. Plant Pathology, 32, 421–428.

    Article  Google Scholar 

  • Colbach, N., Lucas, P., Cavelier, N., & Cavelier, A. (1997). Influence of cropping system on sharp eyespot in winter wheat. Crop Protection, 16, 415–422.

    Article  Google Scholar 

  • Cubeta, M. A., & Vilgalys, R. (1997). Population biology of the Rhizoctonia solani complex. Phytopathology, 87, 480–484.

    Article  CAS  PubMed  Google Scholar 

  • Goll, M. B., Schade-Schütze, A., Swart, G., Oostendorp, M., Schott, J. J., Jaser, B., & Felsenstein, F. G. (2014). Survey on the prevalence of Rhizoctonia spp. in European soils and determination of the baseline sensitivity towards sedaxane. Plant Pathology, 63, 148–154.

    Article  Google Scholar 

  • Guo, Y., Li, W., Sun, H., Wang, N., Yu, H., & Chen, H. (2012). Detection of Rhizoctonia cerealis in soil using real-time PCR. Journal of General Plant Pathology, 78, 247–254.

    Article  CAS  Google Scholar 

  • Hamada, M. S., Yin, Y., Chen, H., & Ma, Z. (2011). The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat. Pest Management Science, 67, 1411–1419.

    Article  CAS  PubMed  Google Scholar 

  • Hamada, M. S., Yin, Y. N., & Ma, Z. H. (2012). Detection of Rhizoctonia cerealis in wheat tissues by a real-time PCR assay. Journal of Plant Pathology, 94, 215–217.

    Google Scholar 

  • Hollins, T. W., Jellis, G. J., & Scott, P. R. (1983). Infection of potato and wheat by isolates of Rhizoctonia solani and R. cerealis. Plant Pathology, 32, 303–310.

    Article  Google Scholar 

  • Lees, A. K., Cullen, D. W., Sullivan, L., & Nicolson, M. J. (2002). Development of conventional and quantitative real-time PCR assays for the detection and identification of Rhizoctonia solani AG3 in potato and soil. Plant Pathology, 51, 293–302.

    Article  CAS  Google Scholar 

  • Lemańczyk, G. (2012). The role of the preceding crop and weed control in the transmission of Rhizoctonia cerealis and R. solani to winter cereals. Journal of Plant Protection Research, 52, 93–105.

    Google Scholar 

  • Lemańczyk, G., & Kwaśna, H. (2013). Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. European Journal of Plant Pathology, 135, 187–200.

    Article  Google Scholar 

  • Li, W., Sun, H., Deng, Y., Zhang, A., & Chen, H. (2013). The heterogeneity of the DNA ITS sequences and its phylogeny in Rhizoctonia cerealis, the cause of sharp eyespot in wheat. Current Genetics, 60, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, P., & Parry, D. W. (1996). Development and use of a PCR assay to detect Rhizoctonia cerealis, the cause of sharp eyespot in wheat. Plant Pathology, 45, 872–873.

    Article  CAS  Google Scholar 

  • Okubara, P. A., Schroeder, K. L., & Paulitz, T. C. (2008). Identification and quantification of Rhizoctonia solani and R. oryzae using real-time polymerase chain reaction. Phytopathology, 98, 837–847.

    Article  CAS  PubMed  Google Scholar 

  • Ophel-Keller, K., Mckay, A., Hartley, D., Herdina, & Curran, J. (2008). Development of a routine DNA-based testing service for soilborne diseases in Australia. Australasian Plant Pathology, 37, 243–253.

    Article  CAS  Google Scholar 

  • Ray, R. V., Jenkinson, P., & Edwards, S. G. (2004). Effects of fungicides on eyespot, caused predominantly by Oculimacula acuformis, and yield of early-drilled winter wheat. Crop Protection, 23, 1199–1207.

    Article  CAS  Google Scholar 

  • Scott, P. R., & Hollins, T. W. (1974). Effects of eyespot on the yield of winter wheat. Annals of Applied Biology, 78, 269–279.

    Article  Google Scholar 

  • Sharon, M., Kuninaga, S., Hyakumachi, M., Naito, S., & Sneh, B. (2008). Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience, 49, 93–114.

    Article  CAS  Google Scholar 

  • Sneh, B., Burpee, L., & Ogoshi, A. (1991). Identification of Rhizoctonia species 133 pp. St. Paul, APS Press.

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodhall, J. W., Lees, A. K., Edwards, S. G., & Jenkinson, P. (2008). Infection of potato by Rhizoctonia solani: effect of anastomosis group. Plant Pathology, 57, 897–905.

    Article  Google Scholar 

  • Woodhall, J. W., Webb, K. M., Giltrap, P. M., Adams, I. P., Peters, J. C., Budge, G. E., & Boonham, N. (2012a). A new large scale soil DNA extraction procedure and real-time PCR assay for the detection of Sclerotium cepivorum in soil. European Journal of Plant Pathology, 134, 467–473.

    Article  CAS  Google Scholar 

  • Woodhall, J. W., Laurenson, L., & Peters, J. C. (2012b). First report of Rhizoctonia solani anastomosis group 5 (AG5) in wheat in the UK. New Disease Reports, 26, 9.

    Article  Google Scholar 

  • Woodhall, J. W., Adams, I. P., Peters, J. C., Harper, G., & Boonham, N. (2013). A new quantitative real-time PCR assay for Rhizoctonia solani AG3-PT and the detection of AGs of Rhizoctonia solani associated with potato in soil and tuber samples in great Britain. European Journal of Plant Pathology, 136, 273–280.

    Article  CAS  Google Scholar 

  • Yang, S., Lin, S., Kelen, G. D., Quinn, T. C., Dick, J. D., Gaydos, C. A., & Rothman, R. E. (2002). Quantitative multiprobe PCR assay for simultaneous detection and identification to species level of bacterial pathogens. Journal of Clinical Microbiology, 40, 3449–3454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Syngenta Global for funding the PhD studentship of Matthew Brown at the University of Nottingham. Eder Somoza Valdeolmillos was supported by the EU Leonardo da Vinci programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Woodhall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodhall, J.W., Brown, M.J., Perkins, K. et al. A TaqMan real-time PCR assay for Rhizoctonia cerealis and its use in wheat and soil. Eur J Plant Pathol 148, 237–245 (2017). https://doi.org/10.1007/s10658-016-1083-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1083-7

Keywords

Navigation