European Journal of Plant Pathology

, Volume 147, Issue 4, pp 887–896 | Cite as

Confirmation of Peronospora agrimoniae as a distinct species

  • Irena Petrželová
  • Young-Joon Choi
  • Michaela Jemelková
  • Ivana Doležalová
  • Julia Kruse
  • Marco Thines
  • Miloslav Kitner
Article

Abstract

Leaves with typical symptoms of downy mildew were found on common agrimony in the Czech Republic in 2014 and 2015 and at several locations in Germany from 2010 to 2014. The causal agent of downy mildew of agrimony was often reported as Peronospora agrimoniae, but sometimes also as P. sparsa. Morphological characteristics of the pathogens found in both countries are in the range of previous works for P. agrimoniae, but also other downy mildews parasitic on Rosaceae, rendering their discrimination based on published observations difficult. For molecular identification sequencing of several loci (nrITS rDNA, cox1 and cox2) was performed. Phylogenetic analyses based on nrITS rDNA clearly separated P. agrimoniae from other Peronospora species infecting Rosaceae. Thus, considering P. agrimoniae as separate species seems justified. Two German specimens were identical to two Czech samples in both nrITS rDNA and cox1 mtDNA sequences, but differed in a single nucleotide substitution in cox2 region. To our knowledge, this is the first verified record of P. agrimoniae on common agrimony in the Czech Republic.

Keywords

Downy mildew of agrimony Morphology Molecular identification Obligate biotrophs Peronospora Rosaceae 

Supplementary material

10658_2016_1058_MOESM1_ESM.pdf (299 kb)
Supplementary file 1(PDF 298 kb)

References

  1. Bonants, P., de Weerdt, M. H., van Gent Pelzer, M., Lacourt, I., Cooke, D., & Duncan, J. (1997). Detection and identification of Phytophtora fragariae Hickman by the polymerase chain reaction. European Journal of Plant Pathology, 103, 345–355.CrossRefGoogle Scholar
  2. Bontea, V. (1953). Ciuperci Parazite si Saprofite din Republica Populara Romana. Bucharest: Editura Academiei R. P. R.Google Scholar
  3. Brandenburger, W., & Hagedorn, G. (2006). Zur Verbreitung von Peronosporales (inkl. Albugo, ohne Phytophthora) in Deutschland. Mitteilungen aus der Biologischen Bundesanstalt für Land– und Forstwirtschaft Berlin–Dahlem, 405, 1–174.Google Scholar
  4. Choi, Y. J., Hong, S. B., & Shin, H. D. (2005). A reconsideration of Pseudoperonospora cubensis and Ps. humuli based on molecular and morphological data. Mycological Research, 109, 841–848.CrossRefPubMedGoogle Scholar
  5. Choi, Y. J., Constantinescu, O., & Shin, H. D. (2007). A new downy-mildew of the Rosaceae: Peronospora oblatispora sp. nov. (Chromista, Peronosporales). Nova Hedwigia, 85, 93–101.CrossRefGoogle Scholar
  6. Choi, Y. J., Shin, H. D., & Thines, M. (2009). Two novel Peronospora species are associated with recent reports of downy mildew on sages. Mycological Research, 113, 1340–1350.CrossRefPubMedGoogle Scholar
  7. Choi, Y. J., Beakes, G., Glockling, S., Kruse, J., Nam, B., Nigrelli, L., Ploch, S., Shin, H. D., Shivas, R. G., Telle, S., Voglmayr, H., & Thines, M. (2015a). Towards a universal barcode of oomycetes—a comparison of the cox1 and cox2 loci. Molecular Ecology Resources, 15, 1275–1288.CrossRefPubMedGoogle Scholar
  8. Choi, Y. J., Klosterman, S. J., Kummer, V., Voglmayr, H., Shin, H. D., & Thines, M. (2015b). Multi-locus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, Oomycota), including pathogens of beet and spinach. Molecular Phylogenetics and Evolution, 86, 24–34.CrossRefPubMedGoogle Scholar
  9. Constantinescu, O. (1991). An annotated list of Peronospora names. Thunbergia, 15, 1–110.Google Scholar
  10. Constantinescu, O., & Negrean, G. (1983). Check-list of Romanian Peronosporales. Mycotaxon, 16, 537–556.Google Scholar
  11. Cooke, D. E. L., Drenth, A., Duncan, J. M., Wagels, G., & Brasier, C. M. (2000). A molecular phylogeny of Phytophtora and related Oomycetes. Fungal Genetics and Biology, 30, 17–32.CrossRefPubMedGoogle Scholar
  12. De Vienne, D. M., Giraud, T., & Martin, O. C. (2007). A congruence index for testingtopological similarity between trees. Bioinformatics, 23, 3119–3124.CrossRefPubMedGoogle Scholar
  13. Dick, M. W. (2001). Straminipilous fungi: Systematics of the Peronosporomycetes, including accounts of the marine straminipilous protists, the plasmodiophorids and similar organisms. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  14. Duke, J. A., Bogenschutz-Godwin, M. J., duCellier, J., & Duke, P. A. K. (2002). Handbook of medicinal herbs. Boca Raton: CRC Press.CrossRefGoogle Scholar
  15. Edgar, R. (2004). Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19, 1349.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Farr, D. F., & Rossman, A. Y. (2015). Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/. Accessed 2 Jul 2015.
  18. Francis, S. M. (1981). Peronospora sparsa. CMI Descriptions of Pathogenic Fungi and Bacteria, 690, 1–2.Google Scholar
  19. Gäumann, E. A. (1923). Beiträge zu einer Monographie der Gattung Peronospora Corda. Zürich: Gebr. Fretz.Google Scholar
  20. Gustavsson, A. (1959). Studies on Nordic Peronosporas. I. Taxonomic revision. Opera Botanica, 3, 1–271.Google Scholar
  21. Hall, G. (1991). Peronospora potentillae. IMI Descriptions of Fungi and Bacteria, 1061, 1–2.Google Scholar
  22. Hatfield, G. (2004). Encyclopedia of folk medicine: Old world and new world traditions. Santa Barbara: ABC-CLIO.Google Scholar
  23. Hirilovich, I. S., & Lemeza, N. A. (2010). Species structure and distribution of micromycetes order Peronosporales in vicinities of geostation “West Beresina”. Proceedings of the National Academy of Science of Belarus, Biological Series 2010 N 4, 27–35.Google Scholar
  24. Horst, R. K. (2001). Westcott’s plant disease handbook. Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  25. Hruby, J. (1930). Beiträge zur Pilzflora Mährens und Schlesiens. Hedwigia, 69, 173–211.Google Scholar
  26. Hudspeth, D. S. S., Nadler, S. A., & Hudspeth, M. E. S. (2000). A cox2 molecular phylogeny of the Peronosporomycetes. Mycologia, 92, 674–684.CrossRefGoogle Scholar
  27. Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.CrossRefPubMedGoogle Scholar
  28. Iwata, Y. (1942). Specialization in Pseudoperonospora cubensis (Berk. et Curt.) Rostov. II. Comparative studies of the morphologies of the fungi from Cucumis sativus L. and Cucurbita moschata Duchesne. Annals of the Phytopathological Society of Japan, 11, 172–185.CrossRefGoogle Scholar
  29. Jermalaviciute, S. (1962). Nauja medziaga Lietuvos TSR Peronosporainiams grybams (Peronosporales) pazinti. Lietuvos TSR Mokslu Akademija, Darbai Ser. C, 3(29), 13–22.Google Scholar
  30. Jung, T., & Burgess, T. I. (2009). Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species. Phytophthora plurivora sp. nov. Persoonia, 22, 95–110.PubMedGoogle Scholar
  31. Kitner, M., Lebeda, A., Sharma, R., Runge, F., Dvořák, P., Tahir, A., Choi, Y. J., Sedláková, B., & Thines, M. (2015). Coincidence of virulence shifts and population genetic changes of Pseudoperonospora cubensis in the Czech Republic. Plant Pathology, 64, 1461–1670.CrossRefGoogle Scholar
  32. Kruse, J. (2014). Diversität der pflanzenpathogenen Kleinpilze im Ökologisch-Botanischen Garten der Universität Bayreuth. Zeitschrift für Mykologie, 80, 169–226.Google Scholar
  33. Kućmierz, J. (1966). Parasitic fungi of the Ojcow National Park. Part II. Archimycetes, Phycomycetes, Ustilaginales. Fragmenta Floristica et Geobotanica, 12, 497–511.Google Scholar
  34. Martin, F. N., & Tooley, P. W. (2003). Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia, 95, 269–284.CrossRefPubMedGoogle Scholar
  35. Mishra, B., & Thines, M. (2014). siMBa—a simple graphical user interface for the Bayesian inference program MrBayes. Mycological Progress, 13, 1255–1258.CrossRefGoogle Scholar
  36. Moncalvo, J. M., Wang, H. H., & Hseu, R. S. (1995). Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia, 87, 223–238.CrossRefGoogle Scholar
  37. Mordue, J. E. M. (1989). Peronospora rubi. CMI Descriptions of Pathogenic Fungi and Bacteria, 976, 1–2.Google Scholar
  38. Mulenko, W., Majewski, T., & Ruszkiewicz-Michalska, M. (2008). Preliminary checklist of micromycetes in Poland. Biodiversity of Poland 9. Krakow: W. Szafer Institute of Botany, Polish Academy of Sciences.Google Scholar
  39. Müller, J., & Kokeš, P. (2008). Extended checklist of downy mildews of Moravia and Czech Silesia. Czech Mycology, 60, 91–104.Google Scholar
  40. Petrželová, I., Dušek, K., & Dušková, E. (2013). Monitoring of pests and diseases in the field collections of medicinal, aromatic and culinary plants (MAPs)—preliminary results. Olomouc Biotech 2013 Plant Biotechnology: Green for Good II, Book of Abstracts, 93.Google Scholar
  41. Pirondi, A., Kitner, M., Iotti, M., Sedláková, B., Lebeda, A., & Collina, M. (2016). Genetic structure and phylogeny of Italian and Czech populations of the cucurbit powdery mildew fungus Golovinomyces orontii inferred by Multilocus Sequence Typing. Plant Pathology, 65, 959–967.CrossRefGoogle Scholar
  42. Robideau, G. P., de Cock, A. W. A. M., Coffey, M. D., Voglmayr, H., Brouwer, H., Bala, K., Chitty, D. W., Désaulniers, N., Eggertson, Q. A., Gachon, C. M. M., Hu, C. H., Küpper, F. C., Rintoul, T. L., Sarhan, E., Verstappen, E. C. P., Zhang, Y., Bonants, P. J. M., Ristaino, J. B., & Lévesque, C. A. (2011). DNAbarcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Molecular Ecology Resources, 11, 1002–1011.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Runge, F., Ndambi, B., Thines, M. (2012). Which morphological characteristics are most influenced by the host matrix in downy mildews? A case study in Pseudoperonospora cubensis. PLoS One, 7, e44863.Google Scholar
  44. Savulescu, T. (1948). Les especes de Peronospora Corda de Roumanie. Sydowia, 2, 255–307.Google Scholar
  45. Skalický, V. (1983). The revision of species of the genus Peronospora on host plants of the family Rosaceae with respect to Central European species. Folia Geobotanica et Phytotaxonomica, 18, 71–101.CrossRefGoogle Scholar
  46. Skalický, V. (1995). Agrimonia L.—řepík. In B. Slavík (Ed.), Květena České republiky 4 (Flora of the Czech Republic) (pp. 233–238). Praha: Academia (in Czech).Google Scholar
  47. Smith, S., Roberson, S., & Cochran, K. (2014). First report of downy mildew on blackberry caused by Peronospora sparsa in Arkansas. Plant Disease, 98, 1585.CrossRefGoogle Scholar
  48. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 4.0.. Molecular Biology and Evolution, 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Thines, M., Telle, S., Ploch, S., & Runge, F. (2009). Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycological Research, 113, 532–540.CrossRefPubMedGoogle Scholar
  51. Tošovská, M., & Buchtová, I. (2012). Situační a výhledová zpráva léčivé, aromatické a kořeninové rostliny (Situation and Outlook Report Medicinal, Aromatic and Culinary Plants). Praha: Ministry of Agriculture (in Czech).Google Scholar
  52. Voglmayr, H., Choi, Y. J., & Shin, H. D. (2014). Multigene phylogeny, taxonomy and reclassification of Hyaloperonospora on Cardamine. Mycological Progress, 13, 131–144.CrossRefPubMedGoogle Scholar
  53. Waller, J. M., Lenné, J. M., & Waller, S. J. (2001). Plant pathologist’s pocketbook. Wallingford: CABI Publishing.CrossRefGoogle Scholar
  54. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, H. Gelfand, J. S. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  1. 1.Centre of the Region Haná for Biotechnological and Agricultural Research, Section of Applied Research of Vegetables and Special Crops of the Crop Research Institute, Department of Genetic Resources for Vegetables, Medicinal and Special PlantsOlomouc-HoliceCzech Republic
  2. 2.Biodiversity and Climate Research Centre (BiK-F) at the Senckenberg Gesellschaft für NaturforschungFrankfurt am MainGermany
  3. 3.Department of Biological Sciences, Institute of Ecology, Evolution and DiversityGoethe University Frankfurt am MainFrankfurt am MainGermany
  4. 4.Department of BiologyKunsan National UniversityGunsanKorea
  5. 5.Integrative Fungal Research Cluster (IPF)Frankfurt am MainGermany
  6. 6.Faculty of Science, Department of BotanyPalacký University in OlomoucOlomoucCzech Republic

Personalised recommendations