European Journal of Plant Pathology

, Volume 147, Issue 4, pp 819–831 | Cite as

Assessment of latent infection with Verticillium longisporum in field-grown oilseed rape by qPCR

  • Jessica Knüfer
  • Daniel Teshome Lopisso
  • Birger Koopmann
  • Petr Karlovsky
  • Andreas von Tiedemann
Article

Abstract

Improvement of cultivar resistance is the key strategy to control the host-specialized pathogen Verticillium longisporum in oilseed rape (OSR). A special feature of this pathogen is its systemic, non-homogenous and delayed colonization of the plant xylem resulting in an extended symptomless period of latency. As a result, severity of infection in the field is difficult to score as it becomes apparent only at crop maturity stages when it may be confused with natural senescence. Assessment of Verticillium disease severity in OSR by visual scoring of microsclerotia on harvested stubbles unsatisfactorily reflects genotypic resistance as it is strongly affected by the ripening stage of the plant. To overcome these limitations, we developed a qPCR method, which unambiguously differentiates levels of quantitative resistance to V. longisporum in OSR genotypes under field conditions. The specificity and sensitivity of two primer pairs targeting ITS or tubulin loci in the V. longisporum genome were tested. While tubulin primers showed a high specificity to V. longisporum isolates, ITS primers exhibited a significantly higher sensitivity in detecting fungal DNA in stem tissue (limit of quantification =0.56 fg DNA) of field-grown pre-symptomatic plants. The best discrimination of resistant and susceptible OSR cultivars based on fungal DNA analysis in stem tissue was achieved at growth stage 80, at the transition of fungal vascular growth in viable plants to saprotrophic colonization of senescent stem tissues. Field screening data obtained with qPCR at growth stage 80 confirmed results from greenhouse testing thus corroborating the relevance and reliability of seedling assays for determining cultivar responses to V. longisporum in the field, as a useful tool for breeders in first selection of elite OSR genotypes with improved resistance to Verticillium.

Keywords

Oilseed rape Verticillium longisporum Cultivar resistance Quantitative real-time PCR Resistance screening 

Supplementary material

10658_2016_1045_MOESM1_ESM.pdf (25 kb)
Supplementary Fig. 1Receiver operating characteristic (ROC) curve from quantitative real-time PCR with ITS primers amplification of V. longisporum DNA extracted from stems of field grown oilseed rape. (PDF 24 kb)
10658_2016_1045_MOESM2_ESM.pdf (5 kb)
Supplementary Fig. 2Correlation between visual disease assessment (stubble disease index) and qPCR analyses (fungal DNA in stem tissue) in four field grown susceptible and resistant winter oilseed rape cultivars. VL, Verticillium longisporum. DW, dry weight. (PDF 4 kb)
10658_2016_1045_MOESM3_ESM.pdf (351 kb)
Supplementary Fig. 3Net AUDPC values (A) and relative stunting (B) showing V. longisporum disease severity in susceptible and resistant winter oilseed rape cultivars under greenhouse conditions at 28 dpi. Data are means of three independent experiments. Bars indicate standard deviations. Express and Oase are resistant reference cultivars. Laser and Falcon are susceptible reference cultivars. Means with the same letter are not significantly different at P = 0.05. (PDF 351 kb)
10658_2016_1045_MOESM4_ESM.docx (14 kb)
ESM 1(DOCX 30 kb)

References

  1. Anonymous (2015). Canadian Food Inspection Agency, 16 Jan 2015.Google Scholar
  2. Atallah, Z. K., Bae, J., Jansky, S. H., Rouse, D. I., & Stevenson, W. R. (2007). Multiplex real-time quantitative PCR to detect and quantify Verticillium dahliae colonization in potato lines that differ in response to Verticillium wilt. Phytopathology, 97, 865–872.CrossRefPubMedGoogle Scholar
  3. Brandfass, C., & Karlovsky, P. (2008). Upscaled CTAB-based DNA extraction and real-time PCR assays for Fusarium culmorum and F. graminearum DNA in plant material with reduced sampling error. International Journal of Molecular Sciences, 9, 2306–2321.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Daebeler, F., Amelung, D. and Zeise, K. (1988). Verticillium-Welke an Winterraps-Auftreten und Bedeutung. Nachrichtenbl. Pflanzenschutz DDR, 42, 71–73.Google Scholar
  5. Debode, J., Poucke, K. V., França, S. C., Maes, M., Höfte, M., & Heungens, K. (2011). Detection of multiple Verticillium species in soil using density flotation and real-time PCR. Plant Disease, 95, 1571–1580.CrossRefGoogle Scholar
  6. Depotter, J. R. L., Deketelaere, S., Inderbitzin, P., Tiedemann, A. v., Höfte, M., Subarao, K., Wood, T. A., & Thomma, B. P. H. J. (2016). Verticillium longisporum, the invisible threat of oilseed rape and other Brassicaceous plant hosts. Molecular Plant Pathology. doi:10.1111/mpp.12350.PubMedGoogle Scholar
  7. Dunker, S., Keunecke, H., Steinbach, P., & Tiedemann, A. v. (2008). Impact of Verticillium longisporum on yield and morphology of winter oilseed rape (Brassica napus) in relation to systemic spread in the plant. Journal of Phytopathology, 156, 698–707.CrossRefGoogle Scholar
  8. Eynck, C., Koopmann, B., Grunewaldt-Stöcker, G., Karlovsky, P., & Tiedemann, A. v. (2007). Differential interactions of Verticillium longisporum and Verticillium dahliae with Brassica napus detected with molecular and histological techniques. European Journal of Plant Pathology, 118, 259–274.CrossRefGoogle Scholar
  9. Eynck, C., Koopmann, B., & Tiedemann, A. v. (2009). Identification of Brassica accessions with enhanced resistance to Verticillium longisporum under controlled and field conditions. Journal of Plant Diseases and Protection, 116, 63–72.CrossRefGoogle Scholar
  10. Fahleson, J., Hu, Q., & Dixelius, C. (2004). Phylogenetic analysis of Verticillium species based on nuclear and mitochondrial sequences. Archives of Microbiology, 181, 435–442.CrossRefPubMedGoogle Scholar
  11. Faraggi, D., & Reiser, B. (2002). Estimation of the area under the ROC curve. Statistics in Medicine, 21, 3093–3106.CrossRefPubMedGoogle Scholar
  12. Floerl, S., Druebert, C., Majcherczyk, A., Karlovsky, P., Kues, U., & Polle, A. (2008). Defence reactions in the apoplastic proteome of oilseed rape (Brassica napus Var. napus) attenuate Verticillium longisporum growth but not disease symptoms. BMC Plant Biology, 8, 129–144.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Floerl, S., Druebert, C., Aroud, H. I., Karlovsky, P., & Polle, A. (2010). Disease symptoms and mineral nutrition in Arabidopsis thaliana in response to Verticillium longisporum VL43 infection. Journal of Plant Pathology, 92, 695–702.Google Scholar
  14. Floerl, S., Majcherczyk, A., Possienke, M., Feussner, K., Tappe, H., Gatz, C., Feussner, I., Kües, U., & Polle, A. (2012). Verticillium longisporum infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in Arabidopsis thaliana. PloS One, 7, e31435.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fluss, R., Faraggi, D., & Reiser, B. (2005). Estimation of the Youden index and its associated cutoff point. Biometrical Journal, 47, 458–472.CrossRefPubMedGoogle Scholar
  16. Gladders, P., Smith, J. A., Kirkpatrick, L., Clewes, E., Grant, C., Barbara, D., Barnes, A. V. and Lane, C. R. (2011). First record of verticillium wilt (Verticillium longisporum) in winter oilseed rape in the UK. New Disease Reports, 23, 8.Google Scholar
  17. Günzelmann, H., & Paul, V. H. (1990). Zum Auftreten und zur Bedeutung der Verticillium-Welke an Raps in der Bundesrepublik Deutschland in 1989. Raps, 8(1), 23–25.Google Scholar
  18. Häffner, E., Karlovsky, P., & Diederichsen, E. (2010). Genetic and environmental control of the Verticillium syndrome in Arabidopsis thaliana. BMC Plant Biology, 10, 235.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Heale, J. B., & Karapapa, K. V. (1999). The Verticillium threat to Canada’s major oilseed crop, canola. Canadian Journal of Plant Pathology, 21, 1–7.CrossRefGoogle Scholar
  20. Inderbitzin, P., Bostock, R. M., Davis, R. M., Usami, T., Platt, H. W., & Subbarao, K. V. (2011). Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PloS One, 6, e28341.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Isaac, I., & Harrison, J. A. C. (1968). The symptoms and causal agents of early-dying disease (Verticillium wilt) of potatoes. Annals of Applied Biology, 61, 231–244.CrossRefGoogle Scholar
  22. Keunecke, H. (2009). Einfluss von Kohlfliegenbefall auf die Infektion und Schadwirkung von Verticillium longisporum und Phoma lingam an Raps. Dissertation Universität Göttingen.Google Scholar
  23. Larsen, R. C., Vandemark, G. J., Hughes, T. J., & Grau, C. R. (2007). Development of a real-time polymerase chain reaction assay for quantifying Verticillium albo-atrum DNA in resistant and susceptible alfalfa. Phytopathology, 97, 1519–1525.CrossRefPubMedGoogle Scholar
  24. Mou, B., Klosterman, S. J., Anchieta, A. G., Wood, E. M., & Subbarao, K. (2015). Characterization of spinach germplasm for resistance against two races of Verticillium dahliae. Hortscience, 50, 1631–1635.Google Scholar
  25. Nutz, S., Döll, K., & Karlovsky, P. (2011). Determination of the LOQ in real-time PCR by receiver operating characteristic curve analysis: application to qPCR assays for Fusarium verticillioides and F. proliferatum. Analytical and Bioanalytical Chemistry, 401, 717–726.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ralhan, A., Schöttle, S., Thurow, C., Iven, T., Feussner, I., Polle, A., & Gatz, C. (2012). The vascular pathogen Verticillium longisporum requires a jasmonic acid-independent COI1 function in roots to elicit disease symptoms in Arabidopsis shoots. Plant Physiology, 159, 1192–1203.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Riediger, N. (2008). Beteiligung systemischer Signale an der Symptomauslösung bei Brassica napus nach Infektion mit Verticillium longisporum und V. dahliae. Dissertation, Universität Göttingen.Google Scholar
  28. Schnathorst (1981). Life Cycle and Epidemiology of Verticillium. In M. E. Mace, A. A. Bell, & C. H. Beckman (Eds.), Fungal wilt diseases of plants (pp. 81–111). London: Academic Press.CrossRefGoogle Scholar
  29. Steventon, L. A., Fahleson, J., Hu, Q., & Dixelius, C. (2002). Identification of the causal agent of Verticillium wilt of winter oilseed rape in Sweden, V. longisporum. Mycological Research, 106, 570–578.CrossRefGoogle Scholar
  30. Tyvaert, L., França, S. C., Debode, J., & Höfte, M. (2014). The endophyte Verticillium Vt305 protects cauliflower against Verticillium wilt. Journal of Applied Microbiology, 116, 1563–1571.CrossRefPubMedGoogle Scholar
  31. Zeise, K. (1992). Gewächshaustest zur Resistenzprüfung von Winterraps (Brassica napus L.var. oleifera Metzger) gegen den Erreger der Rapswelke Verticillium dahliae Kleb. Nachrichtenblatt Deutscher Pflanzenschutzdienst, 44, 125–128.Google Scholar
  32. Zeise, K., & Seidel, D. (1990). Zur Entwicklung und Schadwirkung der Verticillium- Welkekrankheit am Winterraps. Raps, 8, 20–22.Google Scholar
  33. Zeise, K., & Steinbach, P. (2004). Schwarze Rapswurzeln und der Vormarsch der Verticillium-Rapswelke. Raps, 4, 170–174.Google Scholar
  34. Zeise, K., & Tiedemann, A. v. (2001). Morphological and physiological differentiation among vegetative compatibility groups of Verticillium dahliae in relation to V. longisporum. Journal of Phytopathology, 149, 469–475.CrossRefGoogle Scholar
  35. Zeise, K., & Tiedemann, A. v. (2002). Host specialization among vegetative compatibility groups of Verticillium dahliae in relation to Verticillium longisporum. Journal of Phytopathology, 150, 112–119.CrossRefGoogle Scholar
  36. Zhou, L., Hu, Q., Johansson, A., & Dixelius, C. (2006). Verticillium longisporum and V. dahliae: infection and disease in Brassica napus. Plant Pathology, 55, 137–144.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Jessica Knüfer
    • 1
    • 2
  • Daniel Teshome Lopisso
    • 1
  • Birger Koopmann
    • 1
  • Petr Karlovsky
    • 3
  • Andreas von Tiedemann
    • 1
  1. 1.Department of Crop Sciences, Section of Plant Pathology and Crop ProtectionGeorg August UniversityGöttingenGermany
  2. 2.Strube Research GmbH & Co. KGSöllingenGermany
  3. 3.Department of Crop Sciences, Section of Molecular Phytopathology and Mycotoxin ResearchGeorg August UniversityGöttingenGermany

Personalised recommendations