Abstract
The fungus Colletotrichum lindemuthianum is the causal agent of anthracnose, one of the most severe diseases of the common bean (Phaseolus vulgaris). The infection process begins with the adhesion of conidia to the plant’s surface. Appressoria are then formed, allowing penetration of the fungus. Next, the biotrophic phase begins, followed by the necrotrophic phase. Due to the peculiar nutrition mode of the fungus, including both of the previously mentioned stages, it is of great interest to determine which genes are involved in the transition between the two phases during the infection process. To determine this, suppression subtractive hybridization (SSH) was used in association with qRT-PCR in the present study. These methods allowed for the identification of genes that were differentially expressed at each developmental stage of the fungus in the plant. This is the first report on the use of the cited techniques to evaluate the infectious cycle of the fungus. A total of 175 sequences exhibited significant identity (e ≤ 10−5) with sequences present in the sequenced genomes of P. vulgaris and C. lindemuthianum; approximately 41 % of those were determined to belong to the fungus, and 59 % were determined to belong to the plant. Of the predicted sequences, 68 % were of unknown function or were not found in the databases. Among the analyzed expressed sequence tags (ESTs), sequences were found that encode proteins related to: primary and secondary metabolism; the transport of different compounds; the degradation/modification of proteins; cell regulation and signaling; cellular stress response; and the degradation of exogenous compounds. The obtained results allowed for the identification of sequences encoding proteins that are essential for the progression of anthracnose. Furthermore, it was possible to identify new genes, the functions of which have not yet been described, and even to identify unique genes of C. lindemuthianum that are involved in the pathogenicity and virulence of this fungus.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alexander, D., Goodman, R. M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., et al. (1993). Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein la. Proceedings National Academy Sciences USA, 90, 7327–7331.
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.
Ansari, K. I., Palacios, N., Araya, C., Langin, T., Egan, D., & Doohan, F. M. (2004). Pathogenic and genetic variability among Colletotrichum lindemuthianum isolates of different geographic origins. Plant Pathology, 53, 635–642.
Baroncelli, R., Sanz-Martin, J. M., Rech, G. E., Sukno, S. A., & Thon, M. R. (2014). Draft genome sequence of Colletotrichum sublineola, a destructive pathogen of cultivated sorghum. Genome Announcements, 2, e00540–14.
Barrus, M. F. (1918). Varietal susceptibility of beans to strains of Colletotrichum lindemuthianum (Sacc. & Magn.) B & C. Phytopathology, 8, 589–605.
Baumeister, F., Falz, J., Zühl, F., & Seemüller, E. (1998). The proteasome: paradigm of a self-compartmentalizing protease. Cell, 92, 367–380.
Bechinger, C., Giebel, K. F., Schnell, M., Leiderer, P., Deising, H. B., & Bastmeyer, M. (1999). Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science, 285, 1896–1899.
Both, M., Eckert, S. E., Csukai, M., Müller, E., Dimopoulos, G., & Spanu, P. D. (2005). Transcript profiles of Blumeria graminis development during infection reveal a cluster of genes that are Potential virulence determinants. Molecular Plant-Microbe Interactions, 18, 125–133.
Broeker, K., Bernard, F., & Moerschbacher, M. (2006). AnEST library from Puccinia graminis f. sp. tritici reveals genes potentially involved in fungal differentiation. FEMS Microbiology Letters, 256, 273–281.
Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) – model food legumes. Plant and Soil, 252, 55–128.
Budiman, M. A., Mao, L., Wood, T. C., & Wing, R. A. (2000). A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Research, 10, 129–136.
Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum – current status and future directions. Studies in Mycology, 73, 181–213.
Chaves, G. (1980). La antracnosis. In H. F. Schwartz & G. E. Gálvez (Eds.), Problemas de produción de frijol: Enfermedades, insectos, limitaciones edáficas y climáticas de Phaseolus vulgaris (pp. 37–53). Cali: CIAT.
Cramer, R. A., & Lawrence, C. B. (2004). Identification of Alternaria brassicicola genes expressed in planta during pathogenesis of Arabidopsis thaliana. Fungal Genetics and Biology, 41, 115–128.
Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., et al. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434, 980–986.
Dean, R., Van Kan, J. A. L., Pretorious, Z. A., Hammond-Kosack, K. E., Di Pietro, A., et al. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414–430.
Dufresne, M. S. P., Bailey, J. A., Dron, M., & Langin, T. (1998). clk1, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean. Molecular Plant-Microbe Interaction, 11, 99–108.
Emanuelsson, E., Brunak, S., von Heijne, G., & Nielsen, H. (2007). Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols, 2, 953–971.
Fan, C., & Köller, W. (1998). Diversity of cutinases from plant pathogenic fungi: diferential and sequential expression of cutinolytic esterases by Alternaria brassicicola. FEMS Microbiology Letters, 158, 33–38.
Fraire-Velizquez, S., & Lozoya-Gloria, E. (2003). Differential early gene expression in Phaseolus vulgaris to Mexican isolates of Colletotrichum lindemuthianum in incompatible and compatible interactions. Physiological and Molecular Plant Pathology, 63, 79–89.
França, S. C., Roberto, P. G., Marins, M. A., Puga, R. D., Rodrigues, A., & Pereira, J. O. (2001). Biosynthesis of secondary metabolites in sugarcane. Genetics and Molecular Biology, 24, 243–250.
Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O’Connell, R. J., Narusaka, Y., et al. (2013). Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytologist, 197, 1236–1249.
Gepts, P., Aragão, F. J. L., de Barros, E., Blair, M. W., Brondani, R., et al. (2008). Genomics of Phaseolus beans, a major source of dietary protein and micronutrients in the tropics. In P. H. Moore & R. Ming (Eds.), Genomics of tropical crop plants (pp. 113–140). Germany: Springer.
Goetz, F. W. (2003). The “ups” and “dows” in using subtractive cloning techniques to isolate regukated genes in Fish. Integrative and Comparative Biology, 43, 786–793.
Grenville-Briggs, L. J., Avrova, A. O., Bruce, C. R., Williams, A., Whisson, S. C., Birch, P. R. J., et al. (2005). Elevated amino acid biosynthesis in Phytophthora infestans during appressorium formation and potato infection. Fungal Genetics and Biology, 42, 244–256.
Howard, R. J., Ferrari, M. A., Roach, D. H., & Money, N. P. (1991). Penetration of hard substances by a fungus employing enormous turgor pressures. Proceedings National Academy Sciences USA, 88, 11281–11284.
Hrmova, M., & Fincher, G. B. (1993). Purification and properties of three (1-3)-β-D-glucanase isoenzymes from young leaves of barley (Hordeum vulgare). Biochemical Journal, 289, 453–461.
Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome Research, 9, 868–877.
Inoue, H., Nojima, H., & Okayama, H. (1990). High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23–28.
Jin, J. H., & Seyfang, A. (2003). High-affinity myo-inositol transport in Candida albicans: substrate specificity and pharmacology. Microbiology, 149, 3371–3381.
Judelson, H. S., Ah-Fong, A. M. V., Aux, G., Avrova, A. O., Bruce, C., Cakir, C., et al. (2008). Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Molecular Plant-Microbe Interactions, 21, 433–447.
Kämper, J., Kahmann, R., Bolker, M., Ma, L. J., Brefort, T., Saville, B. J., et al. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 444, 97–101.
Kim, S. T., Yu, S., Kim, S. G., Kim, H. J., Kang, S. Y., Hwang, D. H., et al. (2004). Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics, 4, 3579–3587.
Kimura, Y., Aoki, T., & Ayabe, S. (2001). Chalcone isomerase isozymes with different substrate specificities towards 6’-hydroxy- and 6’-deoxychalcones in cultured cells of Glycyrrhiza echinata, a leguminous plant producing 5-deoxyflavonoids. Plant and Cell Physiology, 42, 1169–1173.
Kleemann, J., Rinco-Rivera, L. J., Takahara, H., Neumann, U., Ver, E., Themaat, L., et al. (2012). Sequential delivery of host-induced virulence effectors by apressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathogens, 8, e1002643.
Köller, W., Yao, C., Trail, F., & Parker, D. M. (1995). Role of cutinase in the invasion of plants. Canadian Journal of Botany, 73, S1109–S1118.
Krijger, J. J., Horbach, R., Behr, M., Schweizer, P., Deising, H. B., & Wirsel, S. G. R. (2008). The yeast signal sequence trap identifies secreted proteins of the hemibiotrophic corn pathogen Colletotrichum graminicola. Molecular Plant-Microbe Interaction, 21, 1325–1336.
Kristan, K., Deluca, D., Adamski, J., Stojan, J., & Rižner, T. L. (2005). Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily. BMC Biochemistry, 6, 28.
Kubo, Y., Takano, Y., Tsuji, G., Horino, O., & Furusafa, I. (2000). Regulation of melanin biosynthesis genes during appressorium formation by Colletotrichum lagenarium. In D. Prusky, S. Freeman, & M. B. Dickman (Eds.), Colletotrichum. Host specificity, pathology, and host-pathogen interaction (pp. 99–113). St. Paul: APS Press.
Larionov, A., Krause, A., & Miller, W. (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics, 6, 62.
Lebeda, A., Luhová, L., Sedlárová, M., & Jancova, D. (2001). The role of enzymes in plant-fungal pathogen interactions. Journal of Plant Diseases and Protection, 108, 89–111.
Lee, S. J., Kelley, B. S., Damasceno, C. M. B., John, B. S., Kim, B. S., Kim, B. D., et al. (2006). A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta. Molecular Plant-Microbe Interaction, 19, 1368–1377.
Legay, G., Marouf, E., Berger, D., Neuhaus, J.-M., Mauch-Mani, B., & Slaughter, A. (2011). Identification of genes expressed during the compatible interaction of grapevine with Plasmopara viticola through suppression subtractive hybridization (SSH). European Journal of Plant Pathology, 129, 281–301.
Lei, X. G., & Porres, J. M. (2003). Phytase enzymology, applications, and biotechnology. Biotechnology Letters, 25, 1787–1794.
Liu, D., Raghothama, K. G., Hasegawa, P. M., & Bressan, R. A. (1994). Osmotin overexpression in potato delays development of disease symptoms. Proceedings National Academy Sciences USA, 91, 1888–1892.
Madi, L., Wang, X., Kobiler, I., Lichter, A., & Prusky, D. (2003). Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack. Physiological and Molecular Plant Pathology, 62, 277–283.
Majumder, A. L., Johnson, M. D., & Henry, S. A. (1997). 1 L-myoinositol-1-phosphate synthase. Biochimica et Biophysica Acta, 1348, 245–256.
Martel, M. B., Penhoat, C. H. D., Létoublon, R., & Fèvre, M. (2002). Purification and characterization of a glucoamylase secreted by the plant pathogen Sclerotinia sclerotiorum. Canadian Journal of Microbiology, 48, 212–218.
Mellersh, D. G., Foulds, I. V., Higgins, V. J., & Heath, M. C. (2002). H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant Journal, 29, 257–268.
Michell, R. H. (2008). Inositol derivatives: evolution and functions. Nature Reviews Molecular Cell Biology, 9, 151–161.
Mochizuki, K. (1999). Purification and characterization of 5-oxo-L-prolinase from Paecilomyces varioti F-1, an ATP-dependent hydrolase active with L-2-oxothiazolidine-4-carboxylic acid. Archives of Microbiology, 172, 182–185.
Mueller, O., Kahmann, R., Aguilar, G., Trejo-Aguilar, B., Wu, A., & de Vries, R. P. (2008). The secretome of the maize pathogen Ustilago maydis. Fungal Genetics and Biology, 45, S63–S70.
Münch, S., Lingner, U., Floss, D. S., Ludfig, N., Sauer, N., & Deising, H. B. (2008). The hemibiotrophic lifestyle of Colletotrichum species. Journal of Plant Physiology, 165, 41–51.
Niderman, T., Bruyère, T., Giigler, K., & Mosinger, E. (1993). Antifungal activity of native and recombinant tomato P14 proteins. In B. Fritig & M. Legrand (Eds.), Mechanisms of plant defense responses (p. 450). Dordrecht: Kluwer Academic Publishers.
Niderman, T., Genetet, L., Bruyère, T., Gees, R., Stintzi, A., & Legrand, M. (1995). Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiology, 108, 17–27.
Oblessuc, P. R., Borges, A., Chowdhury, B., Caldas, D. G. G., Tsai, S. M., et al. (2012). Dissecting Phaseolus vulgaris innate immune system against Colletotrichum lindemuthianum infection. PLoS One, 7, e43161.
O’Connell, R. J., Bailey, J. A., & Richmond, D. V. (1985). Cytology and physiology of infection of Phaseolus vulgaris by Colletotrichum lindemuthianum. Physiology and Plant Pathology, 27, 75–98.
O’Connell, R. J., Thon, M. R., Hacquard, S., Amyotte, S. G., Kleemann, J., Torres, M. F., et al. (2012). Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 44, 1060–1068.
Palmiter, R. D. (1998). The elusive function of metallothioneins. Proceedings National Academy Sciences USA, 95, 8428–8430.
Parisot, D., Dufresne, D., Veneault, C., Laugé, R., & Langin, T. (2002). clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum. Molecular Genetics and Genomics, 268, 139–151.
Rawlings, S. L., O’Connell, R. J., & Green, J. R. (2007). The spore coat of the bean anthracnose fungus Colletotrichum lindemuthianum is required for adhesion, appressorium development and pathogenicity. Physiological and Molecular Plant Pathology, 70, 110–119.
Reynolds, T. B. (2009). Strategies for acquiring the phospholipid metabolite inositol in pathogenic bacteria, fungi and protozoa: making it and taking it. Microbiology, 155, 1386–1396.
Rogers, L. M., Flaishman, M. A., & Kolattukudy, P. E. (1994). Cutinase gene disruption in Fusarium solani f. sp. pisi decreases its virulence on pea. Plant Cell, 6, 935–945.
Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings National Academy Sciences USA, 74, 5463–5467.
Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwoog, J., et al. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46, 707–7013.
Silva, K. J. D. E., de Souza, E. A., & Ishikawa, F. H. (2007). Characterization of Colletotrichum lindemuthianum isolates from the state of Minas Gerais, Brazil. Journal of Phytopathology, 155, 241–247.
Soanes, D. M., Alam, I., Cornell, M., Wong, H. M., Hedeler, C., Paton, N. W., et al. (2008). Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One, 3, e2300.
Staszczak, M. (2007). The 26S proteasome of the lignin-degrading Basidiomycete Phlebia radiata. Enzyme and Microbial Technology, 40, 347–353.
Thara, V. K., Fellers, J. P., & Zhou, J. M. (2003). In planta induced genes of Puccinia triticina. Molecular Plant Pathology, 4, 51–56.
Thedei, G., Jr., & Rossi, A. (2006). Identification of non-specific alkaline phosphatases in hyphal cells of the fungus Neurospora crassa by in situ histochemistry. Genetics and Molecular Research, 5, 483–486.
Tisserant, B., Gianinazzi-Pearson, V., Gianinazzi, S., & Gollotte, A. (1993). In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycologycal Research, 97, 245–250.
Tucker, S. L., Thornton, C. R., Tasker, K., Jacob, C., Giles, G., Egan, M., et al. (2004). A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. The Plant Cell, 16, 1575–1588.
Tyler, B. M., Tripathy, S., Zhang, X. M., Dehal, P., Jiang, R. H. Y., Aerts, A., et al. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science, 313, 1261–1266.
Uenojo, M., & Pastore, G. M. (2007). Pectinases: aplicações industriais e perspectivas. Quimica Nova, 30, 388–394.
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., & De Paepe, A. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, research0034.1–0034.11.
Vargas, W. A., Martín, J. M. S., Rech, G. E., Rivera, L. P., Benito, E. P., Díaz-Mínguez, J. M., et al. (2012). Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotrichum graminicola in Maize. Plant Physiology, 158, 1342–1358.
Vasák, M., & Hasler, D. F. (2000). Metallothioneins: new functional and structural insights. Current Opinion in Chemical Biology, 4, 177–183.
Vieira, C., Júnior, T. J. P., & Borém, A. (2006). Feijão (2nd ed.). Viçosa: Editora UFV.
Wu, C., & Bradford, K. J. (2003). Class I chitinase and β-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiology, 133, 263–273.
Yakoby, N., Beno-Moualem, D., Keen, N. T., Dinoor, A., Pines, O., & Prusky, D. (2001). Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction. Molecular Plant-Microbe Interaction, 14, 988–995.
Yao, C., & Koller, W. (1995). Diversity of cutinases from plant pathogenic fungi: different cutinases are expressed during saprophytic and pathogenic stages of Alternaria brassicicola. Molecular Plant-Microbe Interaction, 8, 122–130.
Yatzkan, E., Szöor, B., Fehér, Z., Dombrádi, V., & Yarden, O. (1998). Protein phosphatase 2A is involved in hyphal growth of Neurospora crassa. Molecular Genetics and Genomics, 259, 523–531.
Yoneda, A., & Doering, T. L. (2006). A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis. Molecular Biology of the Cell, 17, 5131–5140.
Acknowledgments
This work was supported by grants from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We thank Professor Everaldo Gonçalves de Barros for providing the isolate A2 2-3 of race 89 C. lindemuthianum.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(DOCX 16 kb)
Rights and permissions
About this article
Cite this article
Fontenelle, M.R., Santana, M.F., Cnossen, A. et al. Differential expression of genes during the interaction between Colletotrichum lindemuthianum and Phaseolus vulgaris . Eur J Plant Pathol 147, 653–670 (2017). https://doi.org/10.1007/s10658-016-1033-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10658-016-1033-4


