Skip to main content
Log in

Vertical infection of Zucchini yellow mosaic virus via pollen transmission occurs at a lower frequency than ovule transmission

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Seed transmission of Zucchini yellow mosaic virus (ZYMV) has been demonstrated in a variety of cucurbits, including wild Cucurbita species, and pollen transmission of viruses is common in the family Potyviridae. Consequently, vertical transmission of ZYMV may occur via the pollen of infected wild squash as opposed to ovule transmission. To determine if vertical infection of ZYMV occurs via pollen transmission, we pollinated flowers on virus-free Cucurbita pepo ssp. texana plants with pollen from ZYMV infected plants. We found that seed infection of ZYMV via pollen occurs at a rate of 0.13 %. This rate is much lower than expected based on previously reported rates of seed transmission, which suggests that while seed transmission via pollen does occur in C. pepo, it is not the main mechanism for vertical infection. Because seed transmission of ZYMV has been shown in virus-resistant transgenic plants, it is possible that ZYMV infection of transgenic plants via pollen may contribute to the seed transmission and geographic distribution of this virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Blua, M., & Perring, T. (1989). Effect of zucchini yellow mosaic virus on development and yield of cantaloupe (Cucumis melo). Plant Disease, 73, 317–320.

    Article  Google Scholar 

  • Desbiez, C., & Lecoq, H. (1997). Zucchini yellow mosaic virus. Plant Pathology, 46, 809–829.

    Article  Google Scholar 

  • Feber, D. (1999). Genetically modified crops in the crosshairs. Science, 286, 1662–1665.

    Article  Google Scholar 

  • Fuchs, M., Chirco, E. M., McFerson, J. R., & Gonsalves, D. (2004). Comparative fitness of a wild squash species and three generations of hybrids between wild X virus-resistant transgenic squash. Environmental Research, 3, 17–28.

    Google Scholar 

  • Hunter, D. G., & Bowyer, J. W. (1997). Cytopathology of developing anthers and pollen mother cells from lettuce plants infected by lettuce mosaic Potyvirus. Journal of Phytopathology, 145, 521–524.

    Article  Google Scholar 

  • Katis, N. I., Tsitsipsi, J. A., Lykouressis, D. P., Papapanayotou, A., Kokinis, G. M., Perdikis, D. C., & Manoussopoulous, I. N. (2006). Transmission of Zucchini yellow mosaic virus by colonizing and non-colonizing aphids in Greece and new aphid vectors of the virus. Journal of Phytopathology, 154, 293–302.

    Article  Google Scholar 

  • Kohnen, P. D., Johansen, I. E., & Hampton, R. O. (1995). Characterization and molecular detection of the P4 pathotype of pea seedborne mosaic virus. Phytopathology, 85, 789–793.

  • Laughlin, K. D., Power, A. G., Snow, A. A., & Spencer, L. J. (2009). Risk Assesment of genetically engineered crops: fitness effects of virus-resistance transgenes in wild Cucurbita pepo. Ecological Applications, 19, 1091–1101.

    Article  PubMed  Google Scholar 

  • Li, L., Wang, W., & Zhou, G. (2007). Analyses of maize embryo invasion by sugarcane mosaic virus. Plant Science, 172, 131–138.

    Article  CAS  Google Scholar 

  • Maule, A. J., & Wang, D. (1996). Seed transmission of plant viruses: a lesson in biological complexity. Trends in Microbiology, 4, 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Mink, G. I. (1993). Pollen and seed transmitted viruses and viroids. Annual Review of Phytopathology, 31, 375–402.

    Article  CAS  PubMed  Google Scholar 

  • Ryder, E. J. (1964). Transmission of common lettuce mosaic virus through the gametes of the lettuce plant. Plant Disease Report, 48, 522–523.

    Google Scholar 

  • Sasu, M. A., Ferrari, M. J., Du, D., Winsor, J. A., & Stephenson, A. G. (2009). Indirect costs of a non-target pathogen mitigate the direct benefits of a virus-resistant transgene in wild Cucurbita. Proceedings of the National Academy of Science, 106, 19067–19071.

    Article  CAS  Google Scholar 

  • Sasu, M. A., Ferrari, M. J., & Stephenson, A. G. (2010). Interrelationships among a virus-resistant transgene, herbivory, and a bacterial disease in wild Cucurbita. International Journal of Plant Sciences, 171, 1048–1058.

    Article  Google Scholar 

  • Sikora, E. J., Murphy, J. F., & Burkett, J. (2006). Performance of a virus resistane transgenic yellow summer squash in Alabama. Journal of Vegetation Science, 12, 75–83.

    Article  Google Scholar 

  • Simmons, H. E., & Munkvold, G. P. (2014). Seed transmission in the Potyviridae. In M. L. Gullino & G. Munkvold (Eds.), Global perspectives on the health of seeds and plant Propogation material (pp. 3–15). Netherlands: Springer.

    Google Scholar 

  • Simmons, H. E., Holmes, E. C., Gildow, F. E., Bothe-Goralcyzk, M. A., & Stephenson, A. G. (2011). Experimental verification of seed transmission of Zucchini yellow mosaic virus. Plant Disease, 95, 751–754.

    Article  Google Scholar 

  • Simmons, H. E., Dunham, J. P., Zinn, K. E., Munkvold, G. P., Holmes, E. C., & Stephenson, A. G. (2013). Zucchini yellow mosaic virus (ZYMV, Potyvirus): vertical transmission, seed infection and cryptic infections. Virus Research, 176, 259–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons, H. E., Prendeville, H. R., Dunham, J. P., Ferrari, M. J., Earnest, J. D., Pilson, D., Munkvold, G. P., Holmes, E. C., & Stephenson, A. G. (2015). Transgenic virus resistance in crop-wild Cucurbita pepo does not prevent vertical transmission of Zucchini yellow mosaic virus. Plant Disease, 99, 1616–1621.

    Article  CAS  Google Scholar 

  • Tricoli, D. M., Carney, K. J., Russell, P. F., Russell McMaster, J., Groff, D. W., Hadden, K. C., Himmel, P. T., Hubbard, J. P., Boeshore, M. L., & Quemada, H. D. (1995). Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2, and zucchini yellow mosaic virus. Nature Biotechnology, 13, 1458–1465.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jim Winsor, Kaity Diorio, Danelle Weakland, and Kayla Nowak for field and greenhouse assistance, Bob Oberheim and his staff for use of the Horticulture Farm at the PSU Agriculture Experiment Station at Rock Springs, PA, and Tony Omeis for greenhouse assistance and use of the Biology Greenhouse. This work was supported by a Biotechnology Risk Assessment Program Grant no. 2009-33120-20093 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Stephenson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harth, J.E., Simmons, H.E. & Stephenson, A.G. Vertical infection of Zucchini yellow mosaic virus via pollen transmission occurs at a lower frequency than ovule transmission. Eur J Plant Pathol 147, 717–720 (2017). https://doi.org/10.1007/s10658-016-1024-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1024-5

Keywords

Navigation