Skip to main content

Rice response to simultaneous bacterial blight and drought stress during compatible and incompatible interactions

Abstract

Plant response to one type of stress can be affected by simultaneous exposure to a second stress, for example when abiotic and biotic stresses occur together. Ten rice genotypes comprising those with bacterial blight (BB) resistance (R) genes, drought quantitative trait loci (QTLs) plus a BB R gene, and BB susceptible genotypes, were subjected to mild and moderate drought stress and plants were inoculated with two Xoo strains (PXO99 and PXO145) to simulate the challenges rice crops face under simultaneous stress of drought and BB. Plant height and dry shoot biomass were significantly reduced by drought stress treatments. The BB disease lesion lengths varied according to rice genotypes and PXO99 Xoo multiplication and spread in planta was higher compared to that of PXO145, which generally decreased under mild drought stress. Rice genotype IRBB7 (Xa7) showed less Xoo spread and a reduced Xoo multiplication under drought stress compared to the well-watered control with PXO145. In contrast, in genotypes with a different BB R gene and/or drought QTLs [IRBB4 (Xa4), IR87705–6-9-B (Xa4 + qDYT 2.2 ), IR87707–445-B-B-B (Xa4 + qDYT 2.2  + qDYT 4.1 ) and IR87707–446-B-B-B (Xa4 + qDYT 2.2  + qDYT 4.1 )], Xoo multiplication and spread in planta was higher with drought stress. This study has shown that drought stress affected rice response to the BB pathogen and the response varied according to the rice genotype. It is concluded that evaluating rice varieties under combined abiotic and biotic stresses will be the best strategy to determine biotic stress resistance durability under climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amtmann, A., Troufflard, S., Armengaud, P. (2008). The effect of potassium nutrition on pest and disease resistance in plants. Physiologia Plantarum, 133, 682–691.

  2. Anjum, S., Xie, X. Y., Wang, L. C., Saleem, M. F., Man, C., & Wang, L. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026–2032.

    Google Scholar 

  3. Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63, 3523–3544.

    CAS  Article  PubMed  Google Scholar 

  4. Bahattacharjee, D. P., Krishnayya, G. R., & Ghosh, A. K. (1973). Analyses of yield components and productive efficiency of rice varieties under soil moisture deficit. Indian Journal of Agronomy, 16, 314–343.

    Google Scholar 

  5. Bartels, D., & Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24, 23–58.

    CAS  Article  Google Scholar 

  6. Beattie, G. A. (2011). Water relations in the interaction of foliar bacterial pathogens with plants. Annual Review of Phytopathology, 49, 533–555.

    CAS  Article  PubMed  Google Scholar 

  7. Bernier, J., Kumar, A., Venuprasad, R., Spaner, D., & Atlin, G. (2007). A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Science, 47, 505–516. doi:10.2135/cropsci2006.07.0495.

    Article  Google Scholar 

  8. De Datta, S.K., Abilay, W.P., Kalwar, G.N., (1973). Water stress effect on flooded tropical rice. 2. Water management in Philippines Irrigation System Research and Operation, pp: 16–36.

  9. Demirevska, K., Zasheva, D., Dimitrov, R., Simova-Stoilova, L., Stamenova, M., & Feller, U. (2009). Drought stress effects on rubisco in wheat: changes in the rubisco large subunit. Acta Physiologiae Plantarum, 31, 1129–1138.

    CAS  Article  Google Scholar 

  10. Diourte, M., Starr, J. L., Jeger, M. J., Stack, J. P., & Rosenow, D. T. (1995). Charcoal rot (Macrophomina phaseolina) resistance and the effects of water-stress on disease development in sorghum. Plant Pathology, 44, 196–202.

    Article  Google Scholar 

  11. Dossa, S. G., Sparks, A., Vera Cruz, C., & Oliva, R. (2015). Decision tools for bacterial blight resistance gene deployment in rice-based agricultural ecosystems. Front Plant Sci., 6, 305. doi:10.3389/fpls.2015.00305.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Freeman, B. C., & Beattie, G. A. (2009). Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 22, 857–867.

    CAS  Article  PubMed  Google Scholar 

  13. Garrity, D. P., & O’Toole, J. C. (1995). Selection for reproductive stage drought avoidance in rice, using infrared thermometry. Agronomy Journal, 87, 773–779.

    Article  Google Scholar 

  14. Hattermann, P. D., & Ries, S. M. (1989). Motility of Pseudomonas syringae pv. glycinea and its role in infection. Phytopathol., 79, 284–289.

    Article  Google Scholar 

  15. Henry, A., Mallikarjuna, S. B. P., Dixit, S., Torres, R. D., Batoto, T. C., Manalili, M., et al. (2015). Physiological mechanisms contributing to the QTL-combination effects on improved performance of IR64 rice NILs under drought. Journal of Experimental Botany, 66, 1787–1799. doi:10.1093/jxb/eru506.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Kauffman, H. E., Reddy, A., Hsieh, S. P. Y., & Merca, S. D. (1973). An improved technique for evaluating resistance of varieties to Xanthomonas oryzae pv. oryzae. Plant dis. Rep, 57, 537–541.

    Google Scholar 

  17. Kearns, D. B. (2010). A field guide to bacterial swarming motility. Nature Reviews Microbiology, 8, 634−644.

  18. Khan, M. A., Naeem, M., & Iqbal, M. (2014). Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.), current status and future directions. European Journal of Plant Pathology, 139, 27–37.

    CAS  Article  Google Scholar 

  19. Kumar, A., Bernier, J., Verulkar, S., Lafitte, H. R., & Atlin, G. N. (2008). Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Research, 107, 221–231. doi:10.1016/j.fcr.2008.02.007.

    Article  Google Scholar 

  20. Kumar, A., Dixit, S., Ram, T., Yadaw, R. B., Mishra, K. K., & Mandal, N. P. (2014). Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. Journal of Experimental Botany, 65, 6265–6278. doi:10.1093/jxb/eru363.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Leach, J. E., Rhoads, M. L., Vera Cruz, C. M., White, F. F., Mew, T. W., Leung, H. (1992). Assessment of genetic diversity and population structure of Xanthomonas oryzae pv. oryzae with a repetitive DNA element. Applied Environmental Microbiology 58, 2188–2195.

  22. Leben, C., Schroth, M. N., & Hildebrand, D. C. (1970). Colonization and movement of Pseudomonas syringae on healthy bean seedlings. Phytopathol, 60, 677–680.

    Article  Google Scholar 

  23. Mayek-Perez, N., Garcia-Espinosa, R., Lopez-Castaneda, C., Acosta-Gallegos, J. A., & Simpson, J. (2002). Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress. Physiological and Molecular Plant Pathology, 60, 185–195.

    Article  Google Scholar 

  24. Mew, T. W. (1987). Current status and future prospects of research on bacterial blight of rice. Annual Review of Phytopathology, 25, 359–382.

    Article  Google Scholar 

  25. Mohr, P. G., & Cahill, D. M. (2003). Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct. Plant Biology, 30, 461–469. doi:10.1071/FP02231.

    CAS  Google Scholar 

  26. Natraijkumar, P., Sujatha, K., Laha, G. S., Srinivasarao, K., Mishra, B., Viraktamath, B. C., et al. (2012). Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. oryzae. Phytopathology, 102, 222–228.

    Article  Google Scholar 

  27. Niño-Liu, D. O., Ronald, P. C., & Bogdanove, A. (2006). Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology, 7, 303–324.

    Article  PubMed  Google Scholar 

  28. Rahman, M. T., Islam, M. T., & Islam, M. O. (2002). Effect of water stress at different growth stages on yield and yield contributing characters of transplanted aman rice. Pakistan Journal of Biological Sciences, 5, 169–172.

    Article  Google Scholar 

  29. Suwa, T. (1962). Studies on the culture media of Xanthomonas oryzae (Uyeda et Ishiyama) Dowson, the causal organism of bacterial blight of rice plant. Annals of the Phytopathological Society of Japan, 27, 165–171.

    Article  Google Scholar 

  30. Swamy, B. P. M., Ahmed, H. U., Henry, A., Mauleon, R., Dixit, S., et al. (2013). Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. PloS One, 8, e62795. doi:10.1371/journal.pone.0062795.

    Article  PubMed  Google Scholar 

  31. Tippmann, H. F., Schlüter, U., & Collinge, D. B. (2006). Common themes in biotic and abiotic stress signaling in plants. In Floriculture, ornamental and plant biotechnology, Middlesex, UK: Global Science Books, 2006, 52–67.

    Google Scholar 

  32. Venuprasad, R., Bool, M. E., Dalid, C. O., Bernier, J., Kumar, A., et al. (2009a). Genetic loci responding to two cycles of divergent selection for grain yield under drought stress in a rice breeding population. Euphytica, 167, 261–269. doi:10.1007/s10681-009-9898-3.

    CAS  Article  Google Scholar 

  33. Venuprasad, R., Dalid, C. O., Delvalle, M., Zhao, D., Espiritu, M., et al. (2009b). Identification and characterization of large-effect quantitative trait loci (QTL) for grain yield under lowland drought stress and aerobic conditions in rice using bulk-segregant analysis (BSA). Theoretical and Applied Genetics, 120, 177–190. doi:10.1007/s00122-009-1168-1.

    Article  PubMed  Google Scholar 

  34. Webb, K. M., Ona, I., Bai, J., Garrett, K. A., Mew, T., Vera Cruz, C. M., & Leach, J. E. (2010). A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytologist, 185, 568–576.

    CAS  Article  PubMed  Google Scholar 

  35. Wright, C. A., & Beattie, G. A. (2004). Pseudomonas syringae pv. tomato cells encounter inhibitory levels of water stress during the hypersensitive response of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 101, 3269–3274.

    CAS  Article  Google Scholar 

  36. Yu, L., Xi, C., Zhen, W., Shimei, W., Yuping, W., Qisheng, Z., Shigui, L., & Chengbin, X. (2013). Arabidopsis enhanced drought tolerance1/homeodomain glabrous11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiology, 162, 1378–1391.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Yu, H., Chen, X., Hong, Y. Y., Wang, Y., Xu, P., Ke, S. D., Liu, H. Y., Zhu, J. K., Oliver, D. J., & Xiang, C. B. (2008). Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell, 20, 1134–1151.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, F., Zhuo, D-L., Zhang, F., Huang, L-Y., Wang, W-S., Xu, J-L., Vera Cruz, C., Li Z-K,, Zhou, Y-L., (2015). Xa39, a novel dominant gene conferring broad-spectrum resistance to Xanthomonas oryzae pv. oryzae in rice. Plant Pathology, 64, 568–575.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Epifania Garcia, Jessica Candace Soriano, Allan Los Añes and Mignon Natividad for their technical assistance. This study was funded by the Federal Ministry for Economic Cooperation and Development (BMZ), Germany, in the framework of Mitigating the Impact of Climate change on Rice Diseases in East Africa (MICCORDEA) and Global Rice Science Partnership (GRiSP).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerbert Sylvestre Dossa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dossa, G.S., Torres, R., Henry, A. et al. Rice response to simultaneous bacterial blight and drought stress during compatible and incompatible interactions. Eur J Plant Pathol 147, 115–127 (2017). https://doi.org/10.1007/s10658-016-0985-8

Download citation

Keywords

  • Xanthomonas oryzae pv. oryzae
  • Bacterial blight
  • Rice
  • Drought stress
  • Xa4
  • Xa7