European Journal of Plant Pathology

, Volume 146, Issue 4, pp 881–892 | Cite as

Nuclear import of Maize chlorotic mottle virus capsid protein is mediated by importin-α

  • Binhui Zhan
  • Fei Lang
  • Tao Zhou
  • Zaifeng FanEmail author


Maize chlorotic mottle virus (MCMV), one of the important pathogens causing corn lethal necrosis disease, possesses a positive-sense single-stranded RNA genome. Subcellular localization of MCMV coat protein (CP) was investigated by tagging with fluorescent proteins to explore its role in virus infection. Our results showed that the CP fusion proteins can be imported into the nucleus, and the N-terminal region rich in basic amino acids is essential for its nuclear localization. Bimolecular fluorescence complementation assays in maize protoplasts demonstrated that the MCMV CP interacted with the nuclear import factor importin-α1a (ZmIMPα1a) and importin-α1b (ZmIMPα1b), which suggests that the nuclear import of MCMV CP is mediated by the classical importin-α/β pathway in plants. We also found that both ZmIMPα1a and ZmIMPα1b expression were up-regulated in maize tissues at 7 d and 10 d post MCMV inoculation, respectively. Silencing ZmIMPα1a and ZmIMPα1b expression simultaneously using the Brome mosaic virus-based silencing vector decreased MCMV accumulation significantly. Our results demonstrated the nuclear import of MCMV CP and imply a role of ZmIMPα1a and ZmIMPα1b during MCMV infection.


Capsid protein Subcellular localization Nuclear import Importin-α BMV-VIGS 



We thank Dr. Kay Scheets from Oklahoma State University for the gift of MCMV clone, Dr. Jörg Kudla from Universität Münster for providing vectors used in the BiFC assay, Dr. Zejian Guo from China Agricultural University for providing the plasmid pCAM35S-GFP, Dr. Andrew Jackson from University of California, Berkeley for providing vectors pGDG and pGDR, Dr. David Ehrhardt from Carnegie Institute of Washington for providing the plasmid pEZS-NL and Dr. Richard S. Nelson from Samuel Roberts Noble Foundation for providing BMV vectors. This study was supported by the National Basic Research Program of China (#2012CB114004), a grant from the Ministry of Agriculture of China (2014ZX08003-001), and the 111 Program (B13006) from the Ministry of Education of China.

Author contributions

B. Z. conducted most of the experiments, analyzed data and wrote the manuscript. F. L. performed partial experiments and analyzed data. T. Z. revised the manuscript. Z. F. designed the experiment, supervised the study and revised the manuscript.

Supplementary material

10658_2016_966_MOESM1_ESM.pdf (279 kb)
Table S1 Primers used for PCR amplification (PDF 278 kb)
10658_2016_966_Fig7_ESM.gif (973 kb)
Fig. S1

Phylodendrogram of the 7 maize importin-α paralogs Alignments were performed using ClustalW and the tree was prepared in MEGA6. The sequences of proteins used in the analysis can be found at MaizeGDB with the accession numbers. The importin-α paralogs investigated in this study were denoted. (GIF 972 kb)

10658_2016_966_MOESM2_ESM.tif (1.5 mb)
High resolution image (TIFF 1.48 mb)
10658_2016_966_Fig8_ESM.gif (329 kb)
Fig. S2

The relative expression level of ZmIMPα2 during MCMV infection Relative expression levels of ZmIMPα2 were determined at 4, 7 and 10 dpi in the first systemically infected maize leaves by qRT-PCR. Three independent experiments were conducted with four biological replicates each. Bars represent the grand means ± SD. Data were analyzed using a two-sample t-test. The P values are shown. (GIF 328 kb)

10658_2016_966_MOESM3_ESM.tif (1.1 mb)
High resolution image (TIFF 1.11 mb)


  1. Adams, I., Miano, D., Kinyua, Z., Wangai, A., Kimani, E., Phiri, N., et al. (2013). Use of next-generation sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathology, 62(4), 741–749.CrossRefGoogle Scholar
  2. Ahlquist, P. (2006). Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nature Reviews Microbiology, 4(5), 371–382.CrossRefPubMedGoogle Scholar
  3. Deng, T. C., Chou, C. M., Chen, C. T., Tsai, C. H., & Lin, F. C. (2014). First report of Maize chlorotic mottle virus on sweet corn in Taiwan. Plant Disease, 98(12), 1748–1748.CrossRefGoogle Scholar
  4. Ding, X. S., Schneider, W. L., Chaluvadi, S. R., Mian, M. A., & Nelson, R. S. (2006). Characterization of a brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Molecular Plant-Microbe Interactions, 19, 1229–1239.CrossRefPubMedGoogle Scholar
  5. Gabriel, G., Klingel, K., Otte, A., Thiele, S., Hudjetz, B., Arman-Kalcek, G., et al. (2011). Differential use of importin-α isoforms governs cell tropism and host adaptation of influenza virus. Nature Communications, 2, 156.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ghildyal, R., Ho, A., Wagstaff, K. M., Dias, M. M., Barton, C. L., Jans, P., et al. (2005). Nuclear import of the Respiratory syncytial virus matrix protein is mediated by importin β1 independent of importin α. Biochemistry, 44(38), 12887–12895.CrossRefPubMedGoogle Scholar
  7. Goldberg, K. B., & Brakke, M. K. (1987). Concentration of Maize chlorotic mottle virus increased in mixed infections with Maize dwarf mosaic virus, strain B. Phytopathology, 77(2), 162–167.CrossRefGoogle Scholar
  8. Guerra-Peraza, O., Kirk, D., Seltzer, V., Veluthambi, K., Schmit, A., Hohn, T., et al. (2005). Coat proteins of Rice tungro bacilliform virus and Mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin α. Journal of General Virology, 86(6), 1815–1826.CrossRefPubMedGoogle Scholar
  9. Haas, G., Azevedo, J., Moissiard, G., Geldreich, A., Himber, C., Bureau, M., et al. (2008). Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. The EMBO Journal, 27(15), 2102–2112.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Herranz, M. C., Pallas, V., & Aparicio, F. (2012). Multifunctional roles for the N-terminal basic motif of Alfalfa mosaic virus coat protein: nucleolar/cytoplasmic shuttling, modulation of RNA-binding activity, and virion formation. Molecular Plant-Microbe Interactions, 25(8), 1093–1103.CrossRefPubMedGoogle Scholar
  11. Hiscox, J. A. (2007). RNA viruses: hijacking the dynamic nucleolus. Nature Reviews Microbiology, 5(2), 119–127.CrossRefPubMedGoogle Scholar
  12. Hull, R. (2014). Plant virology (Fifth ed.). San Diego, California: Academic press.Google Scholar
  13. Kamata, M., Nitahara-Kasahara, Y., Miyamoto, Y., Yoneda, Y., & Aida, Y. (2005). Importin-α promotes passage through the nuclear pore complex of human immunodeficiency virus type 1 Vpr. Journal of Virology, 79(6), 3557–3564.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Karsies, A., Merkle, T., Szurek, B., Bonas, U., Hohn, T., & Leclerc, D. (2002). Regulated nuclear targeting of Cauliflower mosaic virus. Journal of General Virology, 83(7), 1783–1790.CrossRefPubMedGoogle Scholar
  15. Kim, S. H., MacFarlane, S., Kalinina, N. O., Rakitina, D. V., Ryabov, E. V., Gillespie, T., et al. (2007a). Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11115–11120.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kim, S. H., Ryabov, E. V., Kalinina, N. O., Rakitina, D. V., Gillespie, T., MacFarlane, S., et al. (2007b). Cajal bodies and the nucleolus are required for a plant virus systemic infection. The EMBO Journal, 26(8), 2169–2179.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kunik, T., Mizrachy, L., Citovsky, V., & Gafni, Y. (1999). Characterization of a tomato karyopherin α that interacts with the Tomato yellow leaf curl virus (TYLCV) capsid protein. Journal of Experimental Botany, 50(334), 731–732.Google Scholar
  18. Kusia, E. S., Subramanian, S., Nyasani, J. O., Khamis, F., Villinger, J., Ateka, E., et al. (2015). First report of lethal necrosis disease associated with co-infection of finger millet with Maize chlorotic mottle virus and Sugarcane mosaic virus in Kenya. Plant Disease, 99, 899.CrossRefGoogle Scholar
  19. Lane, L. C. (1974). The Bromoviruses. Advances in Virus Research, 19, 151–220.CrossRefPubMedGoogle Scholar
  20. Lange, A., Mills, R. E., Lange, C. J., Stewart, M., Devine, S. E., & Corbett, A. H. (2007). Classical nuclear localization signals: definition, function, and interaction with importin α. Journal of Biological Chemistry, 282(8), 5101–5105.CrossRefPubMedGoogle Scholar
  21. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402–408.CrossRefPubMedGoogle Scholar
  22. Lukhovitskaya, N. I., Cowan, G. H., Vetukuri, R. R., Tilsner, J., Torrance, L., & Savenkov, E. I. (2015). Importin-α-mediated nucleolar localization of potato mop-top virus TRIPLE GENE BLOCK1 (TGB1) protein facilitates virus systemic movement, whereas TGB1 self-interaction is required for cell-to-cell movement in Nicotiana benthamiana. Plant Physiology, 167(3), 738–752.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Meng, B., & Li, C. (2010). The capsid protein of Grapevine rupestris stem pitting-associated virus contains a typical nuclear localization signal and targets to the nucleus. Virus Research, 153(2), 212–217.CrossRefPubMedGoogle Scholar
  24. Nardozzi, J. D., Lott, K., & Cingolani, G. (2010). Phosphorylation meets nuclear import: a review. Cell Communication and Signaling, 8(1), 32.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Niblett, C., & Claflin, L. (1978). Corn lethal necrosis-a new virus disease of corn in Kansas. Plant Disease, 62(1), 15–19.Google Scholar
  26. Nitahara-Kasahara, Y., Kamata, M., Yamamoto, T., Zhang, X., Miyamoto, Y., Muneta, K., et al. (2007). Novel nuclear import of Vpr promoted by importin α is crucial for human immunodeficiency virus type 1 replication in macrophages. Journal of Virology, 81(10), 5284–5293.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nutter, R., Scheets, K., Panganiban, L., & Lommel, S. (1989). The complete nucleotide sequence of the Maize chlorotic mottle virus genome. Nucleic Acids Research, 17(8), 3163–3177.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Olspert, A., Paves, H., Toomela, R., Tamm, T., & Truve, E. (2010). Cocksfoot mottle sobemovirus coat protein contains two nuclear localization signals. Virus Genes, 40(3), 423–431.CrossRefPubMedGoogle Scholar
  29. Palmeri, D., & Malim, M. H. (1999). Importin β can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin α. Molecular and Cellular Biology, 19(2), 1218–1225.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pouton, C. W., Wagstaff, K. M., Roth, D. M., Moseley, G. W., & Jans, D. A. (2007). Targeted delivery to the nucleus. Advanced Drug Delivery Reviews, 59(8), 698–717.CrossRefPubMedGoogle Scholar
  31. Qi, D., Omarov, R. T., & Scholthof, K. B. G. (2008). The complex subcellular distribution of satellite Panicum mosaic virus capsid protein reflects its multifunctional role during infection. Virology, 376(1), 154–164.CrossRefPubMedGoogle Scholar
  32. Rajamäki, M. L., & Valkonen, J. P. (2009). Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. The Plant Cell, 21(8), 2485–2502.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Resa-Infante, P., Thieme, R., Ernst, T., Arck, P. C., Ittrich, H., Reimer, R., et al. (2014). Importin-α7 is required for enhanced influenza a virus replication in the alveolar epithelium and severe lung damage in mice. Journal of Virology, 88(14), 8166–8179.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Scheets, K. (1998). Maize chlorotic mottle machlomovirus and Wheat streak mosaic rymovirus concentrations increase in the synergistic disease corn lethal necrosis. Virology, 242(1), 28–38.CrossRefPubMedGoogle Scholar
  35. Scheets, K. (2000). Maize chlorotic mottle machlomovirus expresses its coat protein from a 1.47-kb subgenomic RNA and makes a 0.34-kb subgenomic RNA. Virology, 267(1), 90–101.CrossRefPubMedGoogle Scholar
  36. Sheen, J. (1991). Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. The Plant Cell, 3(3), 225–245.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Stenger, D. C., Young, B. A., Qu, F., Morris, T. J., & French, R. (2007). Wheat streak mosaic virus lacking helper component-proteinase is competent to produce disease synergism in double infections with Maize chlorotic mottle virus. Phytopathology, 97(10), 1213–1221.CrossRefPubMedGoogle Scholar
  38. Sun, L., Zhang, H., Li, D., Huang, L., Hong, Y., Ding, X. S., et al. (2013). Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea. Plant Molecular Biology, 81(1–2), 41–56.CrossRefPubMedGoogle Scholar
  39. Truant, R., & Cullen, B. R. (1999). The arginine-rich domains present in Human immunodeficiency virus type 1 tat and rev function as direct importin β-dependent nuclear localization signals. Molecular and Cellular Biology, 19(2), 1210–1217.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Uyemoto, J., Bockelman, D., & Claflin, L. (1980). Severe outbreak of corn lethal necrosis disease in Kansas. Plant Disease, 64(1), 99–100.CrossRefGoogle Scholar
  41. Waggoner, S., & Sarnow, P. (1998). Viral ribonucleoprotein complex formation and nucleolar-cytoplasmic relocalization of nucleolin in poliovirus-infected cells. Journal of Virology, 72(8), 6699–6709.PubMedPubMedCentralGoogle Scholar
  42. Wang, Y., Tzfira, T., Gaba, V., Citovsky, V., Palukaitis, P., & Gal-On, A. (2004). Functional analysis of the Cucumber mosaic virus 2b protein: pathogenicity and nuclear localization. Journal of General Virology, 85(10), 3135–3147.CrossRefPubMedGoogle Scholar
  43. Wangai, A., Redinbaugh, M., Kinyua, Z., Miano, D., Leley, P., Kasina, M., et al. (2014). First report of Maize chlorotic mottle virus and maize lethal necrosis in Kenya. Phytopathology, 104(12), 1360–1369.CrossRefGoogle Scholar
  44. Wirthmueller, L., Roth, C., Banfield, M. J., & Wiermer, M. (2013). Hop-on hop-off: importin-α-guided tours to the nucleus in innate immune signaling. Frontiers in Plant Science, 4, 149.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wirthmueller, L., Roth, C., Fabro, G., Caillaud, M. C., Rallapalli, G., Asai, S., et al. (2015). Probing formation of cargo/importinα transport complexes in plant cells using a pathogen effector. The Plant Journal, 81(1), 40–52.CrossRefPubMedGoogle Scholar
  46. Wurm, T., Chen, H., Hodgson, T., Britton, P., Brooks, G., & Hiscox, J. A. (2001). Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. Journal of Virology, 75(19), 9345–9356.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Xie, L., Zhang, J., Wang, Q., Meng, C., Hong, J., & Zhou, X. (2011). Characterization of Maize chlorotic mottle virus associated with maize lethal necrosis disease in China. Journal of Phytopathology, 159(3), 191–193.CrossRefGoogle Scholar
  48. Zhang, Y., Zhang, X., Niu, S., Han, C., Yu, J., & Li, D. (2011). Nuclear localization of Beet black scorch virus capsid protein and its interaction with importin α. Virus Research, 155(1), 307–315.CrossRefPubMedGoogle Scholar
  49. Zhu, M., Chen, Y., Ding, X. S., Webb, S. L., Zhou, T., Nelson, R. S., et al. (2014). Maize Elongin C interacts with the viral genome-linked protein, VPg, of Sugarcane mosaic virus and facilitates virus infection. New Phytologist, 203(4), 1291–1304.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Agro-biotechnology and Ministry of Agriculture Key Laboratory for Plant PathologyChina Agricultural UniversityBeijingChina

Personalised recommendations