Advertisement

European Journal of Plant Pathology

, Volume 146, Issue 4, pp 757–778 | Cite as

Assessing plant health in a network of experiments on hardy winter wheat varieties in France: multivariate and risk factor analyses

  • Serge SavaryEmail author
  • Céline Jouanin
  • Irène Félix
  • Emmanuelle Gourdain
  • François Piraux
  • Laetitia Willocquet
  • François Brun
Original Article

Abstract

A large network of field experiments has been conducted over several years across France to identify combinations of winter wheat cultivars and management practices in which partial resistances under limited chemical protection would achieve adequate disease management, while leading to satisfactory yield performance, and so achieve the double objective of ecological sustainability and economic viability. Little information is available to document the variation in multiple disease levels, a necessary step towards a chemical extensification process, in wheat networked experiments. This article provides a description of disease intensities in a set of 101 experiments totalling 3525 individual wheat plots over eight successive years (2003–2010). The diseases considered are brown rust (BR, Puccinia triticina), yellow rust (YR, Puccinia striiformis), fusarium head blight (FHB, Fusarium graminearum, F. culmorum, and F. avenaceum), powdery mildew (PM, Blumeria graminis), and septoria tritici blotch (STB, Zymoseptoria tritici). Hierarchical cluster analysis led to the identification of three variety groups associated with (1) moderate-low disease levels in general, except for YR (moderate levels) – 16 varieties; (2) moderate-low BR, YR, and FHB levels, and moderate PM and STB levels – 12 varieties; (3) comparatively higher BR, YR, FHB, and STB levels, and moderate PM levels – 17 varieties. The association of disease levels represented as binary categories (i.e., epidemics vs. non-epidemics) with climatic years corresponded to chi-square values (χ2 = 87.0–1402) that were one to two orders of magnitude larger than the values corresponding to the associations of diseases with variety groups (χ2 = 6.41–321) or with levels of crop management (χ2 = 21.2–82.1). Multivariate non parametric analyses indicated the existence of three disease syndromes, two of which being dominated by BR or STB, and a third associated with diverse diseases and frequent FHB. This suggests that STB and BR might each be considered as key-stone species dominating specific wheat disease syndromes. Multiple correspondence analysis highlighted the linkages between multiple epidemic occurrence and the three characterized variety groups. Risk factors analyses conducted through logistic regressions provided quantitative estimates of the contribution of climatic years, variety groups, and crop management, to the likelihood of epidemic occurrence for each of the five diseases considered. The results indicate that climatic years, wheat varieties, and crop management, in this decreasing order, define disease epidemic risk in the multiple wheat-diseases pathosystem.

Keywords

Categorical data Risk factor Multiple pathosystem Crop management Agricultural extensification Sustainable agriculture 

Notes

Acknowledgments

This research was supported partly by PEBiP – “Analyse stratégique des relations Pratiques - Environnement - Bioagresseurs - Pertes de récoltes”, funded by the French ministry of agriculture and fisheries. We also thank the Blé Rustiques Network (INRA, ARVALIS, Chambres d’Agriculture, and CIVAM) for making data available.

References

  1. Avelino, J., Willocquet, L., & Savary, S. (2004). Effects of crop management patterns on coffee rust epidemics. Plant Pathology, 53, 541–547.CrossRefGoogle Scholar
  2. Avelino, J., Zelaya, H., Merlo, A., Pineda, A., Ordonez, M., & Savary, S. (2006). The intensity of a coffee rust epidemic is dependent on production situations. Ecological Modelling, 197, 431–447.CrossRefGoogle Scholar
  3. Benzécri, J. P. (1973). L’Analyse des Données, Tome 2 (632 p). Paris: L’Analyse des Correspondances. Dunod.Google Scholar
  4. Berry, P. M., Kindred, D. R., Olesen, J. E., Jorgensen, L. N., & Paveley, N. D. (2010). Quantifying the effect of interactions between disease control, nitrogen supply and land use change on the greenhouse gas emissions associated with wheat production. Plant Pathology, 59, 753–763.CrossRefGoogle Scholar
  5. Bouchard, C., Bernicot, M. H., Félix, I., Guérin, O., Loyce, C., Omon, B., et al. (2008). Associer des itinéraires techniques de niveaux d’intrants varies à des variétés rustiques de blé tendre: évaluation économique, environnementale et énergétique. Courrier de l’Environnement, 55, 53–77.Google Scholar
  6. Brancourt-Hulmel, M., Doussinault, G., Lecomte, S., Bérard, P., Le Buanec, B., & Trottet, M. (2003). Genetic improvement f agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Science, 43, 37–45.CrossRefGoogle Scholar
  7. De Wit, C. T. (1992). Resource use efficiency in agriculture. Agricultual Systems, 40,: 125–151.Google Scholar
  8. De Wolf, E. D., Madden, L. V., & Lipps, P. E. (2003). Risk assessment models for wheat Fusarium head blight epidemics based on within season weather data. Phytopathology, 93, 428–435.CrossRefPubMedGoogle Scholar
  9. Doussinault, G. (1998). La sélection pour des variétés adaptées à une agriculture durable. Dossiers Environnement, 16, 39–44.Google Scholar
  10. Esker, P. E., Harri, J., Dixon, P., & Nutter Jr., F. W. (2006). Comparison of models for forecasting of Stewart’s disease of corn in Iowa. Plant Disease, 90, 1353–1357.CrossRefGoogle Scholar
  11. Félix, I., Loyce, C., Bouchard, C., Meynard, J. M., Bernicot, M. H., Rolland, B., et al. (2002). Associer des variétés rustiques à des niveaux d’intrants réduits: intérêts économiques et perspectives agronomiques. Perspectives Agricoles, 279, 30–35.Google Scholar
  12. Goyeau, H., & Lannou, C. (2011). Specific resistance to leaf rust expressed at the seedling stage in cultivars grown in France from 1983 to 2007. Euphytica, 178, 45–62.CrossRefGoogle Scholar
  13. Goyeau, H., Berder, J., Czerepak, C., Lanen, C., & Lannou, C. (2012). Low diversity and fast evolution in the population of Puccinia triticina causing durum wheat leaf rust in France from 1999 to 2009, as revealed by an adapted differential set. Plant Pathology, 61, 761–772.CrossRefGoogle Scholar
  14. Greenacre, M. J. (1984). Theory and Applications of Correspondence Analysis. London: Academic Press.Google Scholar
  15. Harrell Jr., F. E. (2001). Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer Verlag.CrossRefGoogle Scholar
  16. Hau, B., & Kranz, J. (1990). Mathematics and statistics for analysis in epidemiology. In J. Kranz (Ed.), Epidemics of plant diseases. Mathematical analysis and modeling (Second ed.). Berlin, Heidelberg, New York: Springer Verlag.Google Scholar
  17. Jennings, P., Coates, M. E., Walsh, K., Turner, J. A., & Nicholson, P. (2004). Determination of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathology, 53, 643–652.CrossRefGoogle Scholar
  18. Lames, F. C., & McCulloch, C. E. (1990). Multivariate analysis in ecology and systematics: panacea or Pandora’s box? Annual Review of Ecology and Systematics, 21, 129–166.CrossRefGoogle Scholar
  19. Leitch, M. H., & Jenkins, P. D. (1995). Influence of nitrogen on the development of Septoria epidemics in winter. Journal of Agricultural Science, 124, 361–368.CrossRefGoogle Scholar
  20. Lenné, J. M., & Jeger, M. J. (1994). Evaluation of plant pathogens in complex ecosystems. In J. P. Blakeman & B. Williamson (Eds.), Ecology of plant pathogens (pp. 63–77). Wallingford: CABI.Google Scholar
  21. Loyce, C., Meynard, J. M., Bouchard, C., Rolland, B., Lonnet, P., Bataillon, P., et al. (2008). Interaction between cultivar and crop management effects on winter wheat diseases, lodging, and yield. Crop Protection, 27, 1131–1142.CrossRefGoogle Scholar
  22. Loyce, C., Meynard, J. M., Bouchard, C., Rolland, B., Lonnet, P., Bataillon, P., et al. (2012). Growing winter wheat cultivars under different management intensities in France: a multicriteria assessment based on economic, energetic and environmental indicators. Field Crops Research, 125, 167–178.CrossRefGoogle Scholar
  23. Nielsen, L. K., Jensen, J. D., Nielsen, G. C., Jensen, J. E., Spliid, N. H., Thomsen, I. K., et al. (2011). Fusarium head blight of cereals in Denmark: Species complex and related mycotoxins. Phytopathology, 101, 960–969.CrossRefPubMedGoogle Scholar
  24. Palti, J. (1981). Cultural Practices and Infectious Crop Diseases. Berlin, Heidelberg, New York: Springer Verlag.CrossRefGoogle Scholar
  25. Reddy, C. S., Laha, G. S., Prasad, M. S., Krishnaveni, D., Castilla, N. P., Nelson, A., et al. (2011). Characterizing multiple linkages between individual diseases, crop health syndromes, germplasm deployment, and rice production situations in India. Field Crops Research, 120, 241–253.CrossRefGoogle Scholar
  26. Rolland, B., Bouchard, C., Loyce, C., Meynard, J.-M., Guyomard, H., Lonnet, P., et al. (2003). Des itinéraires techniques à bas niveaux d’intrants pour des variétés rustiques de blé tendre: une alternative pour concilier économie et environnement. Courrier de l’environnement de l’INRA, 49, 47–62.Google Scholar
  27. Savary, S. (2014). The roots of crop health: cropping practices and disease management. Food Security, 6, 819–831.CrossRefGoogle Scholar
  28. Savary, S., Elazegui, F. A., Moody, K., & Teng, P. S. (1994). Characterization of rice cropping practices and multiple pest systems in the Philippines. Agricultural Systems, 46, 385–408.CrossRefGoogle Scholar
  29. Savary, S., Madden, L. V., Zadoks, J. C., & Klein-Gebbinck, H. W. (1995). Use of categorical information and correspondence analysis in plant disease epidemiology. In Advances in Botanical Research incorporating Advances in Plant Pathology, 21, 213–240. London: Academic Press Ltd..Google Scholar
  30. Savary, S., Teng, P. S., Willocquet, L., & Nutter Jr., F. W. (2006). Quantification and modeling of crop losses, a review of purposes. Annual Review of Phytopathology, 44, 89–112.CrossRefPubMedGoogle Scholar
  31. Savary, S., Mila, A., Willocquet, L., Esker, P. D., Carisse, O., & McRoberts, N. (2011). Risk factors for crop health under global change and agricultural shifts: a framework of analyses using rice in tropical and subtropical Asia as a model. Phytopathology, 101, 696–709.CrossRefPubMedGoogle Scholar
  32. Wiese, M. V. (1982). Crop management by comprehensive appraisal of yield determining variables. Annual Review of Phytopathology, 20, 419–432.CrossRefGoogle Scholar
  33. Wilkinson, L., Engelman, E., Corter, J. & Coward, M. (2007). Cluster analysis, pp. 65–124: SYSTAT Statistics 12, Vol 1. San Jose, CA.Google Scholar
  34. Willocquet, L., Aubertot, J. N., Lebard, S., Robert, C., Lannou, C., & Savary, S. (2008). WHEATPEST, a production situation - based simulation model of yield losses caused by multiple injuries for wheat in Europe. Field Crops Research, 107, 12–28.CrossRefGoogle Scholar
  35. Zadoks, J. C. (1993). Cultural methods. In: Zadoks, J.C. (Ed), pp. 163–170: Modern crop protection: development and perspectives. Wageningen Pers, Wageningen.Google Scholar
  36. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.CrossRefGoogle Scholar
  37. Zhang, X. Y., Loyce, C., Meynard, J. M., & Savary, S. (2006). Characterization of multiple disease systems and cultivar susceptibilities for the analysis of yield losses in winter wheat. Crop Protection, 25, 1013–1023.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Serge Savary
    • 1
    • 2
    Email author
  • Céline Jouanin
    • 1
  • Irène Félix
    • 3
  • Emmanuelle Gourdain
    • 4
  • François Piraux
    • 4
  • Laetitia Willocquet
    • 1
  • François Brun
    • 5
  1. 1.INRA, UMR1248 AGIRCastanet-Tolosan cedexFrance
  2. 2.INPT, UMR AGIRUniversité ToulouseToulouseFrance
  3. 3.ARVALIS, Domaine du ChaumoyLe SubdrayFrance
  4. 4.ARVALIS, Station expérimentaleBoignevilleFrance
  5. 5.ACTACastanet-Tolosan cedexFrance

Personalised recommendations