European Journal of Plant Pathology

, Volume 146, Issue 4, pp 741–755 | Cite as

Assessing plant health in a network of experiments on hardy winter wheat varieties in France: patterns of disease-climate associations

  • Serge SavaryEmail author
  • Céline Jouanin
  • Irène Félix
  • Emmanuelle Gourdain
  • François Piraux
  • François Brun
  • Laetitia Willocquet


A data set generated by a multi-year (2003–2010) and multi-site network of experiments on winter wheat varieties grown at different levels of crop management is analysed in order to assess the importance of climate on the variability of wheat health. Wheat health is represented by the multiple pathosystem involving five components: leaf rust, yellow rust, fusarium head blight, powdery mildew, and septoria tritici blotch. An overall framework of associations between multiple diseases and climate variables is developed. This framework involves disease levels in a binary form (i.e. epidemic vs. non-epidemic) and synthesis variables accounting for climate over spring and early summer. The multiple disease-climate pattern of associations of this framework conforms to disease-specific knowledge of climate effects on the components of the pathosystem. It also concurs with a (climate-based) risk factor approach to wheat diseases. This report emphasizes the value of large scale data in crop health assessment and the usefulness of a risk factor approach for both tactical and strategic decisions for crop health management.


Puccinia triticina Puccinia striiformis Fusarium graminearum F. culmorum F. avenaceum Blumeria graminis Zymoseptoria tritici Categorical data Risk factor Multiple pathosystem Correspondence analysis Logistic regression 



This research was supported partly by PEBiP – “Analyse stratégique des relations Pratiques - Environnement - Bioagresseurs - Pertes de récoltes”, funded by the French ministry of agriculture and fisheries. We also thank the Blé Rustiques Network (INRA, ARVALIS, Chambres d’Agriculture, and CIVAM) for making data available.


  1. Ali, S., Gladieux, P., Leconte, M., Gautier, A., Justesen, A. F., Hovmoller, M. S., Enjalbert, J. & de Vallavieille-Pope, C. (2014). Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS Pathogens, 10 doi:10.1371/journal.ppat.1003903Google Scholar
  2. Benzécri, J. P. (1973). L’Analyse des Données, Tome2 (632 p). Paris: L’Analyse des Correspondances. Dunod.Google Scholar
  3. Bockus, W. W., Bowden, R. L., Hunger, R. M., Morrill, W.;. L., Murray, T. D., & Smiley, R. W. (2010). Compendium of Wheat Diseases and Pests (3rd ed.). APS Press St Paul MN.Google Scholar
  4. Campbell, L. C., & Madden, L. V. (1990). Introduction to Plant Disease Epidemiology. New York: John Wiley & Sons.Google Scholar
  5. Clifford, B. C., & Harris, R. G. (1981). Controlled environment studies of the epidemic potential of Puccinia recondita f. sp. tritici on wheat in Britain. Transactions of the British Mycological Society, 77, 351–358.CrossRefGoogle Scholar
  6. Coakley, S. M., & Line, R. F. (1981). Quantitative relationships between climatic variables and stripe rust epidemics on winter wheat. Phytopathology, 71, 461–467.CrossRefGoogle Scholar
  7. Daamen, R. A. (1990). Surveys of cereal diseases and pests in the Netherlands. 1. Weather and winter wheat cropping during 1974–1986. Netherlands Journal of Plant Pathology, 96, 227–236.CrossRefGoogle Scholar
  8. Daamen, R. A., & Stol, W. (1990). Surveys of cereal diseases and pests in the Netherlands. 2. Stem-base diseases of winter wheat. Netherlands Journal of Plant Pathology, 96, 251–260.CrossRefGoogle Scholar
  9. Daamen, R. A., & Stol, W. (1992). Surveys of cereal diseases and pests in the Netherlands. 5. Occurrence of Septoria spp. in winter wheat. Netherlands Journal of Plant Pathology, 98, 369–376.CrossRefGoogle Scholar
  10. Daamen, R. A., & Stol, W. (1994). Surveys of cereal diseases and pests in the Netherlands. 6. Occurrence of insect pests in winter wheat. Netherlands Journal of Plant Pathology, 99(Suppl. 3), 51–56.Google Scholar
  11. Daamen, R. A., Langerak, C. J., & Stol, W. (1991). Surveys of cereal diseases and pests in the Netherlands. 3. Monographella nivalis and Fusarium spp. in winter wheat fields and seed lots. Netherlands Journal of Plant Pathology, 97, 105–114.CrossRefGoogle Scholar
  12. Daamen, R. A., Stubbs, R. W., & Stol, W. (1992). Surveys of cereal diseases and pests in the Netherlands. 4. Occurrence of powdery mildew and rusts in winter wheat. Netherlands Journal of Plant Pathology, 98, 301–312.CrossRefGoogle Scholar
  13. Vallavieille-Pope, C. de ; Huber, L., Leconte, M. & Goyeau, H. (1995). Comparative effects of temperature and interrupted wet periods on germination, penetration and infection of Puccinia recondita f.sp. tritici and P. striiformis on wheat seedlings. Phytopathology, 85, 409–415.Google Scholar
  14. Döring, T. F., Pautasso, M., Finckh, M. R., & Wolfe, M. (2012). Concepts of plant health – reviewing and challenging the foundations of plant protection. Plant Pathology, 61, 1–15.CrossRefGoogle Scholar
  15. Durand, Y., Giraud, G., Laternser, M., Etchevers, P., Mérindol, L., & Lesaffre, B. (2009). Reanalysis of 47 years of climate in the French alps (1958–2005): Climatology and trends for snow cover. Journal of Applied Meteorology and Climatology, 48, 2487–2512.CrossRefGoogle Scholar
  16. Eversmeyer, M. G., & Kramer, C. L. (1998). Models of early spring survival of wheat leaf rust in the central Great Plains. Plant Disease, 82, 987–991.CrossRefGoogle Scholar
  17. Eversmeyer, M. G., Kramer, C. L., & Browder, L. E. (1980). Effect of temperature and host: parasite combination on the latent period of Puccinia recondita in seedling wheat plants. Phytopathology, 70, 938–941.CrossRefGoogle Scholar
  18. Gladders, P., Langton, S. D., Barrie, I. A., Hardwick, N. V., Taylor, M. C., & Paveley, N. D. (2007). The importance of weather and agronomic factors for the overwinter survival of yellow rust (Puccinia striiformis) and subsequent disease risk in commercial wheat crops in England. Annals of Applied Biology, 150(3), 371–382.CrossRefGoogle Scholar
  19. Greenacre, M. J. (1984). Theory and Applications of Correspondence Analysis. London: Academic Press.Google Scholar
  20. Hardwick, N. V., Jones, D. R., & Slough, J. E. (2001). Factors affecting diseases of winter wheat in England and Wales, 1989-98. Plant Pathology, 50, 453–462.CrossRefGoogle Scholar
  21. Harrell Jr., F. E. (2001). Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer-Verlag.CrossRefGoogle Scholar
  22. Holmes, S. J. I., & Colhoun, J. (1974). Infection of wheat by Septoria nodorum and S. tritici in relation to plant age, air temperature and relative humidity. Transactions of the British Mycological Society, 63, 329–338.CrossRefGoogle Scholar
  23. Hovmøller, M. S. (2001). Disease severity and pathotype dynamics of Puccinia striiformis f.sp. tritici in Denmark. Plant Pathology, 50, 181–189.CrossRefGoogle Scholar
  24. Hovmøller, M. S., Sorensen, C. K., Walter, S., & Justesen, A. F. (2011). Diversity of Puccinia striiformis on cereals and grasses. Annual Review of Phytopathology, 49, 197–217.CrossRefPubMedGoogle Scholar
  25. Jennings, P., Coates, M. E., Walsh, K., Turner, J. A., & Nicholson, P. (2004). Determination of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathology, 53, 643–652.CrossRefGoogle Scholar
  26. King, J. E. (1977). Surveys of diseases of winter wheat in England and Wales, 1970-1975. Plant Pathology, 26, 8–20.CrossRefGoogle Scholar
  27. Kranz, J. (1988). Measuring plant disease. In J. Kranz & J. Rotem (Eds.), Experimental Techniques in Plant Disease Epidemiology. Heidelberg, New York: Springer Verlag. Berlin.CrossRefGoogle Scholar
  28. Kriss, A. B., Paul, P. A., & Madden, L. V. (2010). Relationship between yearly fluctuations in Fusarium head blight intensity and environmental variables: a window-pane analysis. Phytopathology, 100, 784–797.CrossRefPubMedGoogle Scholar
  29. Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., et al. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 2224–2260.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Madden, L. V., Hughes, G., & Van den Bosch, F. (2007). The Study of Plant Disease Epidemics. St Paul, Minnesota, USA: The American Phytopathology Press.Google Scholar
  31. Milus, E. A., Kristensen, K., & Hovmøller, M. S. (2009). Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology, 99, 89–94.CrossRefPubMedGoogle Scholar
  32. Nielsen, L. K., Jensen, J. D., Nielsen, G. C., Jensen, J. E., Spliid, N. H., Thomsen, I. K., et al. (2011). Fusarium head blight of cereals in Denmark: Species complex and related mycotoxins. Phytopathology, 101, 960–969.CrossRefPubMedGoogle Scholar
  33. Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathology, 44, 207–238.CrossRefGoogle Scholar
  34. Paulitz, T. C. (1996). Diurnal release of ascospores by Gibberella zeae in inoculated wheat plots. Plant Disease, 80, 674–678.CrossRefGoogle Scholar
  35. Polley, R. W., & Thomas, M. R. (1991). Surveys of diseases of winter wheat in England and Wales, 1976–1988. The Annals of Applied Biology, 119, 1–20.CrossRefGoogle Scholar
  36. Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M., et al. (2008). Analysis of Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France. Journal of Applied Meteorology and Climatology, 47, 92–107.CrossRefGoogle Scholar
  37. Rapilly, F. (1979). Yellow rust epidemiology. Annual Review of Phytopathology, 17, 59–73.CrossRefGoogle Scholar
  38. Roelfs, A. P., & Bushnell, W. R. (Eds.) (1985). The Cereal rusts. Vol. 2: The Diseases, Their Distribution, Epidemiology, and Control. Orlando: Eds. Academic Press.Google Scholar
  39. Rossi, V., & Giosuè, S. (2003). A dynamic simulation model for powdery mildew epidemics on winter wheat. OEPP Bulletin, 33, 389–396.CrossRefGoogle Scholar
  40. Savary, S. (2014). The roots of crop health: cropping practices and disease management. Food Security, 6, 819–831.CrossRefGoogle Scholar
  41. Savary, S., Madden, L. V., Zadoks, J. C., & Klein-Gebbinck, H. W. (1995). Use of categorical information and correspondence analysis in plant disease epidemiology. Advances in Botanical Research incorporating Advances in Plant Pathology, 21, 213–240.CrossRefGoogle Scholar
  42. Savary, S., Mila, A., Willocquet, L., Esker, P. D., Carisse, O., & McRoberts, N. (2011). Risk factors for crop health under global change and agricultural shifts: A framework of analyses using rice in tropical and subtropical Asia as a model. Phytopathology, 101, 696–709.CrossRefPubMedGoogle Scholar
  43. Savary, S., Jouanin, C., Félix, I., Gourdain, E., Piraux, F., Willocquet, L., et al. (2016). Assessing plant health in a network of experiments on hardy winter wheat varieties in France: multivariate and risk factor analyses. European Journal of Plant Pathology. doi: 10.1007/s10658-016-0955-1.
  44. Shah, D. A., Molineros, J. E., Paul, P. A., Willyerd, K. T., Madden, L. V., & De Wolf, E. D. (2013). Predicting Fusarium head blight epidemics with weather-driven pre- and post-anthesis logistic regression models. Phytopathology, 103, 906–919.CrossRefPubMedGoogle Scholar
  45. Shah, D. A., De Wolf, E. D., Paul, P. A., & Madden, L. V. (2014). Predicting Fusarium head blight epidemics with boosted regression trees. Phytopathology, 104, 702–714.CrossRefPubMedGoogle Scholar
  46. Shaner, G., & Finney, R. E. (1976). Weather and epidemics of Septoria leaf blotch of wheat. Phytopathology, 66, 781–785.CrossRefGoogle Scholar
  47. Sørensen, C. K., Hovmøller, M. S., Leconte, M., Dedryver, F., & de Vallavieille-Pope, C. (2014). New races of Puccinia striiformis found in Europe reveal race specificity of long-term effective adult plant resistance in wheat. Phytopathology, 104, 1042–1051.CrossRefPubMedGoogle Scholar
  48. Steinberg, D., & Colla, P. (2007). Logistic regression, Pages 2–92 in. Statistics III, SYSTAT 12. San Jose, CA: SYSTAT Software, Inc..Google Scholar
  49. Suffert, F., Sache, I., & Lannou, C. (2011). Early stages of septoria tritici blotch epidemics of winter wheat: build-up, overseasoning, and release of primary inoculum. Plant Pathology, 60, 166–177.CrossRefGoogle Scholar
  50. Te Beest, D. E., Paveley, N. D., Shaw, M. W., & Van den Bosch, F. (2008). Disease-weather relationships for powdery mildew and yellow rust on winter wheat. Phytopathology, 98, 609–617.CrossRefGoogle Scholar
  51. Te Beest, D. E., Shaw, M. W., Pietravalle, S., & Van den Bosch, F. (2009). A predictive model for early-warning of Septoria leaf blotch on winter wheat. European Journal of Plant Pathology, 124, 413–425.CrossRefGoogle Scholar
  52. Tollenaar, H. (1985). Uredospore germination and development of some cereal rusts from South-central Chile at constant temperatures. Phytopathologische Zeitschrift, 114, 118–125.CrossRefGoogle Scholar
  53. Tollenaar, H., & Houston, B. R. (1967). A study of the epidemiology of stripe rust (Puccinia striiformis) in California. Canadian Journal of Botany, 45, 291–307.CrossRefGoogle Scholar
  54. Tomerlin, J. R., Eversmeyer, M. G., Kramer, C. L., & Browder, L. E. (1983). Temperature and host effects on latent and infectious periods and on urediniospore production of Puccinia recondita f.sp. tritici. Phytopathology, 73, 414–419.CrossRefGoogle Scholar
  55. Wainshilbaum, S. J., & Lipps, P. E. (1991). Effect of temperature and growth stage of wheat on development of leaf and glume blotch caused by Septoria tritici and S. nodorum. Plant Disease, 75, 993–998.CrossRefGoogle Scholar
  56. Wiik, L., & Ewaldz, T. (2009). Impact of temperature and precipitation on plant diseases of winter wheat in Southern Sweden, 1983-2007. Crop Protection, 28, 952–962.CrossRefGoogle Scholar
  57. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Serge Savary
    • 1
    • 2
    Email author
  • Céline Jouanin
    • 1
  • Irène Félix
    • 3
  • Emmanuelle Gourdain
    • 4
  • François Piraux
    • 4
  • François Brun
    • 5
  • Laetitia Willocquet
    • 1
  1. 1.INRA, UMR1248 AGIRCastanet-Tolosan cedexFrance
  2. 2.INPT, UMR AGIRUniversité ToulouseToulouseFrance
  3. 3.ARVALIS, Domaine du ChaumoyLe SubdrayFrance
  4. 4.ARVALIS, Station expérimentaleBoignevilleFrance
  5. 5.ACTACastanet-Tolosan cedexFrance

Personalised recommendations