European Journal of Plant Pathology

, Volume 146, Issue 2, pp 401–417 | Cite as

Fungal communities in organically grown winter wheat affected by plant organ and development stage

  • Magdalena Grudzinska-Sterno
  • Jonathan Yuen
  • Jan Stenlid
  • Annika DjurleEmail author


The fungal community on the roots, stem bases, stems and grains of organically grown winter wheat was analysed using terminal restriction fragment length polymorphism (T-RFLP) combined with cloning and sequencing of the ITS region. The changes in the composition of fungi in different plant parts and over time as well as interactions between fungi were also investigated. Among 58 fungal taxa found the most common were Davidiella macrospora, Cladosporium spp., Tetracladium maxilliforme, Didymella exitialis, Microdochium nivale and an unidentified species within Ascomycetes. Several potential wheat pathogens were found: Fusarium spp. including F. poae and G. avenacea (F. avenaceum), Microdochium nivale, Oculimacula yallundae, Parastagonospora nodorum and Zymoseptoria tritici and most of them were present on all plant parts. Plant part affected the most the fungal colonization of wheat as was shown both by multivariate analysis of the whole fungal community as well as the analysis based on the identified species. The composition of fungal communities in different parts changed during the growing season but no pattern common for the whole crop could be observed. The most dynamic and significant changes were found among yeasts. Both positive and negative significant interactions between pairwise combinations of pathogens were observed. Positive significant associations were also found between pathogens and other fungi.


Fungal community Wheat T-RFLP Fungal pathogens Saprophytes Growth stage Plant part 



We wish to thank Ian A. Dickie from Landcare Research, Lincoln, New Zealand who adjusted the software TRAMPR to our data. We thank also Robert Bukowski from Cornell University, Ithaca, USA for help with T-REX software. We are grateful to Björn Lindahl for reading and commenting on the manuscript. The authors also thank M. Löfgren, M. Jonsson and D. Rönnlund for their technical assistance.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

10658_2016_927_MOESM1_ESM.pdf (27 kb)
Online Resource 1 T-RFLP pattern of Cladosporium and Fusarium species included in the reference database. Values are apparent fragment lengths (bp) obtained by using restriction enzymes Alu I, Cfo I, Taq I (PDF 27 kb)
10658_2016_927_MOESM2_ESM.pdf (49 kb)
Online Resource 2 The occurrence of the most common fungal taxa on winter wheat during one growing season analysed by logistic regression and shown as the odds of finding fungi in plant parts. The upper and lower 95 % confidence intervals are shown (PDF 48 kb)


  1. Abdo, Z., Schuette, U. M. E., Bent, S. J., Williams, C. J., Forney, L. J., & Joyce, P. (2006). Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environmental Microbiology, 8(5), 929–938.CrossRefGoogle Scholar
  2. Allmer, J., Vasiliauskas, R., Ihrmark, K., Stenlid, J., & Dahlberg, A. (2006). Wood-inhabiting fungal communities in woody debris of Norway spruce (Picea abies (L.) Karst.), as reflected by sporocarps, mycelial isolations and T-RFLP identification. FEMS Microbiology Ecology, 55(1), 57–67.CrossRefPubMedGoogle Scholar
  3. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Avis, P. G., Dickie, I. A., & Mueller, G. M. (2006). A ‘dirty’ business: testing the limitations of terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi. Molecular Ecology, 15(3), 873–882.CrossRefGoogle Scholar
  5. Bateman, G. L., Edwards, S. G., Marshall, J., Morgan, L. W., Nicholson, P., Nuttall, M., et al. (2000). Effects of cultivar and fungicides on stem-base pathogens, determined by quantitative PCR, and on diseases and yield of wheat. Annals of Applied Biology, 137(3), 213–221.CrossRefGoogle Scholar
  6. Bateman, G. L., & Kwaśna, H. (1999). Effects of number of winter wheat crops grown successively on fungal communities on wheat roots. Applied Soil Ecology, 13(3), 271–282.CrossRefGoogle Scholar
  7. Bensch, K., Groenewald, J. Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B. A., et al. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology, 67, 1–94.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blixt, E., Olson, A., Lindahl, B., Djurle, A., & Yuen, J. (2010). Spatiotemporal variation in the fungal community associated with wheat leaves showing symptoms similar to stagonospora nodorum blotch. European Journal of Plant Pathology, 126(3), 373–386.CrossRefGoogle Scholar
  9. Bockus, W. W., Bowden, R. L., Hunger, R. M., Morrill, W. L., Murray, T. D., & Smiley, R. W. (2010). Compendium of wheat diseases and pests.: APS Press, St. PaulGoogle Scholar
  10. Colwell, R. K., & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 345(1311), 101–118.CrossRefPubMedGoogle Scholar
  11. Consolo, V. F., Albani, C. M., Beron, C. M., Salerno, G. L., & Cordo, C. A. (2009). A conventional PCR technique to detect Septoria tritici in wheat seeds. Australasian Plant Pathology, 38(3), 222–227.CrossRefGoogle Scholar
  12. Cromey, M. G., Butler, R. C., Mace, M. A., & Cole, A. L. J. (2004). Effects of the fungicides azoxystrobin and tebuconazole on Didymella exitialis, leaf senescence and grain yield in wheat. Crop Protection, 23(11), 1019–1030.CrossRefGoogle Scholar
  13. Culman, S. W., Bukowski, R., Gauch, H. G., Cadillo-Quiroz, H., & Buckley, D. H. (2009). T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics, 10, 171.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Culman, S. W., Gauch, H. G., Blackwood, C. B., & Thies, J. E. (2008). Analysis of T-RFLP data using analysis of variance and ordination methods: A comparative study. Journal of Microbiological Methods, 75(1), 55–63.CrossRefPubMedGoogle Scholar
  15. Dickie, I. A., & FitzJohn, R. G. (2007). Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza, 17(4), 259–270.CrossRefPubMedGoogle Scholar
  16. Dickie, I. A., Xu, B., & Koide, R. T. (2002). Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytologist, 156(3), 527–535.CrossRefGoogle Scholar
  17. Edel-Hermann, V., Gautheron, N., Mounier, A., & Steinberg, C. (2015). Fusarium diversity in soil using a specific molecular approach and a cultural approach. Journal of Microbiological Methods, 111, 64–71.CrossRefPubMedGoogle Scholar
  18. Edel, V., Steinberg, C., Gautheron, N., & Alabouvette, C. (1997). Evaluation of restriction analysis of polymerase chain reaction (PCR)-amplified ribosomal DNA for the identification of Fusarium species. Mycological Research, 101, 179–187.CrossRefGoogle Scholar
  19. FitzJohn, R. G., & Dickie, I. A. (2007). TRAMPR: an R package for analysis and matching of terminal-restriction fragment length polymorphism (TRFLP) profiles. Molecular Ecology Notes, 7(4), 583–587.CrossRefGoogle Scholar
  20. Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – application to identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113–118.CrossRefPubMedGoogle Scholar
  21. Gauch, H. G. (1992). Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Amsterdam: Elsevier Science Publishers.Google Scholar
  22. Gonzalez, M. S., & Trevathan, L. E. (2000). Identity and pathogenicity of fungi associated with root and crown rot of soft red winter wheat grown on the Upper Coastal Plain Land Resource Area of Mississippi. Journal of Phytopathology-Phytopathologische Zeitschrift, 148(2), 77–85.CrossRefGoogle Scholar
  23. Hovmøller, M. S., Sørensen, C. K., Walter, S., & Justesen, A. F. (2011). Diversity of Puccinia striiformis on cereals and grasses. Annual Review of Phytopathology, 49, 197–217.CrossRefPubMedGoogle Scholar
  24. Kristensen, R., Torp, M., Kosiak, B., & Holst-Jensen, A. (2005). Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycological Research, 109, 173–186.CrossRefPubMedGoogle Scholar
  25. Kwaśna, H., Bateman, G. L., & Ward, E. (2008). Determining species diversity of microfungal communities in forest tree roots by pure-culture isolation and DNA sequencing. Applied Soil Ecology, 40(1), 44–56.CrossRefGoogle Scholar
  26. Kwaśna, H., Bateman, G. L., & Ward, E. (2010). Microbiota in wheat roots evaluated by cloning of ITS1/2 rDNA and sequencing. Journal of Phytopathology, 158(4), 278–287.CrossRefGoogle Scholar
  27. Larran, S., Perelló, A., Simón, M. R., & Moreno, V. (2002). Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World Journal of Microbiology and Biotechnology, 18(7), 683–686.CrossRefGoogle Scholar
  28. Larran, S., Perelló, A., Simón, M. R., & Moreno, V. (2007). The endophytic fungi from wheat (Triticum aestivum L.). World Journal of Microbiology and Biotechnology, 23(4), 565–572.CrossRefGoogle Scholar
  29. Lemańczyk, G., & Sadowski, C. K. (2002). Fungal communities and health status of roots of winter wheat cultivated after oats and oats mixed with other crops. BioControl, 47(3), 349–361.CrossRefGoogle Scholar
  30. Liggitt, J., Jenkinson, P., & Parry, D. W. (1997). The role of saprophytic microflora in the development of Fusarium ear blight of winter wheat caused by Fusarium culmorum. Crop Protection, 16(7), 679–685.CrossRefGoogle Scholar
  31. Lindahl, B. D., Ihrmark, K., Boberg, J., Trumbore, S. E., Högberg, P., Stenlid, J., et al. (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173(3), 611–620.CrossRefPubMedGoogle Scholar
  32. Lindblad, M., Gidlund, A., Sulyok, M., Börjesson, T., Krska, R., Olsen, M., et al. (2013). Deoxynivalenol and other selected Fusarium toxins in Swedish wheat - Occurrence and correlation to specific Fusarium species. International Journal of Food Microbiology, 167, 284–291.CrossRefPubMedGoogle Scholar
  33. Lucas, J. A., Dyer, P. S., & Murray, T. D. (2000). Pathogenicity, host-specificity, and population biology of Tapesia spp., causal agents of eyespot disease of cereals. In J. A. Callow (Ed.), Advances in Botanical Research Incorporating Advances in Plant Pathology, Vol 33 (Vol. 33, pp. 225–258, Advances in Botanical Research).Google Scholar
  34. Magurran, A. E. (1988). Ecological diversity and its measurement. Princeton, NJ, USA: Princeton University Press.CrossRefGoogle Scholar
  35. Matusinsky, P., Mikolasova, R., Spitzer, T., & Klem, K. (2008). Colonization of winter wheat stem bases by communities of pathogenic fungi. Cereal Research Communications, 36(1), 77–88.CrossRefGoogle Scholar
  36. Müllenborn, C., Steiner, U., Ludwig, M., & Oerke, E. C. (2008). Effect of fungicides on the complex of Fusarium species and saprophytic fungi colonizing wheat kernels. European Journal of Plant Pathology, 120(2), 157–166.CrossRefGoogle Scholar
  37. Nicolaisen, M., Justesen, A. F., Knorr, K., Wang, J., & Pinnschmidt, H. O. (2014). Fungal communities in wheat grain show significant co-existence patterns among species. Fungal Ecology, 11, 145–153.Google Scholar
  38. Perelló, A., Simón, M. R., & Arambarri, A. M. (2002). Interactions between foliar pathogens and the saprophytic microflora of the wheat (Triticum aestivum L.) phylloplane. Journal of Phytopathology-Phytopathologische Zeitschrift, 150(4–5), 232–243.CrossRefGoogle Scholar
  39. Pettitt, T., Xu, X. M., & Parry, D. (2003). Association of Fusarium species in the wheat stem rot complex. European Journal of Plant Pathology, 109(7), 769–774.CrossRefGoogle Scholar
  40. Pfender, W. F., & Wootke, S. L. (1988). Microbial communities of Pyrenophora-infested wheat straw as examined by multivariate analysis. Microbial Ecology, 15(1), 95–113.CrossRefPubMedGoogle Scholar
  41. Roos, J., Hopkins, R., Kvarnheden, A., & Dixelius, C. (2011). The impact of global warming on plant diseases and insect vectors in Sweden. European Journal of Plant Pathology, 129(1), 9–19.CrossRefGoogle Scholar
  42. Shah, D. A., & Bergstrom, G. C. (1999). Epidemiology of seedborne Stagonospora nodorum: a case study of New York winter wheat. In M. van Ginkel, A. McNab, & J. Krupinsky (Eds.), The fifth international Septoria workshop, CIMMYT Mexico 1999 (pp 102–104)Google Scholar
  43. Shivanna, M. B., Meera, M. S., & Hyakumachi, M. (1996). Role of root colonization ability of plant growth promoting fungi in the suppression of take-all and common root rot of wheat. Crop Protection, 15(6), 497–504.CrossRefGoogle Scholar
  44. Sieber, T., Riesen, T. K., Muller, E., & Fried, P. M. (1988). Endophytic fungi in four winter wheat cultivars (Triticum aestivum L.) differing in resistance against Stagonospora nodorum (Berk.) Cast. & Germ. = Septoria nodorum (Berk.) Berk. Journal of Phytopathology-Phytopathologische Zeitschrift, 122(4), 289–306.CrossRefGoogle Scholar
  45. Smiley, R. W., Dernoeden, P. H., & Clarke, B. B. (2005). Compendium of turfgrass diseases (3rd ed.): APS Press.Google Scholar
  46. Stenglein, S. A. (2009). Fusarium poae: a pathogen that needs more attention. Journal of Plant Pathology, 91(1), 25–36.Google Scholar
  47. Thies, J. E. (2007). Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Science Society of America Journal, 71(2), 579–591.CrossRefGoogle Scholar
  48. Vujanovic, V., Mavragani, D., & Hamel, C. (2012). Fungal communities associated with durum wheat production system: A characterization by growth stage, plant organ and preceding crop. Crop Protection, 37, 26–34.Google Scholar
  49. Vujanovic, V., Vidovic, S., Fernandez, M. R., Daida, P., & Korber, D. (2009). Whole-cell protein and ITS rDNA profiles as diagnostic tools to discriminate Fusarium avenaceum intraspecific variability and associated virulence. Canadian Journal of Microbiology, 55(2), 117–125.CrossRefPubMedGoogle Scholar
  50. Waern, P., & Sandström, M. (2007). Växtskyddsåret 2007. Dalarna, Gästrikland, Hälsingland, Uppland och Västmanlands län. Jordbruksinformation 15. Jönköping: Jordbruksverket.Google Scholar
  51. White, T. J., Bruns, T. D., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In T. J. White, J. J. Sninsky, D. H. Gelfand, & M. A. Innin (Eds.), PCR Protocols a Guide to Methods and Applications (pp. 315–322). San Diego, USA: Academic Press.Google Scholar
  52. Wiik, L. (2009). Yield and disease control in winter wheat in Southern Sweden during 1977-2005. Crop Protection, 28(1), 82–89.CrossRefGoogle Scholar
  53. Xu, X. M., Parry, D. W., Nicholson, P., Thomsett, M. A., Simpson, D., Edwards, S. G., et al. (2005). Predominance and association of pathogenic fungi causing Fusarium ear blight in wheat in four European countries. European Journal of Plant Pathology, 112(2), 143–154.CrossRefGoogle Scholar
  54. Yli-Mattila, T., Mach, R. L., Alekhina, I. A., Bulat, S. A., Koskinen, S., Kullnig-Gradinger, C. M., et al. (2004). Phylogenetic relationship of Fusarium langsethiae to Fusarium poae and Fusarium sporotrichioides as inferred by IGS, ITS, beta-tubulin sequences and UP-PCR hybridization analysis. International Journal of Food Microbiology, 95(3), 267–285.CrossRefPubMedGoogle Scholar
  55. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Magdalena Grudzinska-Sterno
    • 1
  • Jonathan Yuen
    • 1
  • Jan Stenlid
    • 1
  • Annika Djurle
    • 1
    Email author
  1. 1.Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations