Skip to main content
Log in

Baseline sensitivity and control efficacy of pyrisoxazole against Botrytis cinerea

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Botrytis cinerea is an important airborne plant pathogen with a wide host range. Gray mold caused by B. cinerea usually leads to both yield and quality reduction and causes severe losses. In China, the percentage of yield loss caused by B. cinerea gray mold in vegetable production is generally 10 to 20 %, sometimes up to over 60 % in some severely infected regions. The novel fungicide pyrisoxazole was registered for the control of tomato gray mold in China and has not been put into widespread use. In this study, baseline sensitivity of B. cinerea to pyrisoxazole was established based on EC50 values of 165 isolates sampled from tomato from Liaoning Province of China in 2012. Results showed that the frequency distribution of pyrisoxazole EC50 values was a unimodal curve with a right-hand tail. The mean EC50 value was 0.0676 ± 0.0409 (SD) μg/ml and the range of individual EC50 values was 0.0128 to 0.1987 μg/ml. There was no cross-resistance between pyrisoxazole, carbendazim and procymidone. The control efficacy of pyrisoxazole was assessed on detached leaves and in pot experiments. Pyrisoxazole provided over 80 % preventive control efficacy and over 50 % curative control efficacy at 100, 200, 400 μg/ml on detached leaves. It also provided over 80 % preventive control efficacy and over 60 % curative control efficacy at 100, 200, 400 μg/ml in pot experiments. These results indicate that pyrisoxazole is a highly effective fungicide with both preventive and curative effect for the control of B. cinerea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amiri, A., Heath, S. M., & Peres, N. A. (2014). Resistance to fluopyram, fluxapyroxad, and penthiopyrad in Botrytis cinerea from strawberry. Plant Disease, 98, 532–539.

    Article  CAS  Google Scholar 

  • Bardas, G. A., Veloukas, T., Koutita, O., & Karaoglanidis, G. S. (2010). Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Management Science, 66, 967–973.

    Article  CAS  PubMed  Google Scholar 

  • Brent, K. J., & Hollomon, D. W. (2007). Fungicide resistance: the assessment of risk. FRAC Monograph No. 2, second (revised) edition. FRAC, Brussels, Belgium. http://www.frac.info/docs/default-source/publications/monographs/monograph-2.pdf?sfvrsn=8. Accessed 13 Aug 2015.

  • Chen, F. P., Han, P., Liu, P. F., Si, N. G., Liu, J. L., & Liu, X. L. (2014). Activity of the novel fungicide SYP-Z048 against plant pathogens. Scientific Reports, 4, 6473. doi:10.1038/srep06473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elad, Y., Williamson, B., Tudzynski, P., Delen, N., et al. (2007). Botrytis spp. and diseases they cause in agricultural systems – an introduction. In Y. Elad (Ed.), Botrytis: biology, pathology and control (pp. 1–8). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Esterio, M., Ramos, C., Walker, A. S., Fillinger, S., Leroux, P., & Auger, J. (2011). Phenotypic and genetic characterization of Chilean isolates of Botrytis cinerea with different levels of sensitivity to fenhexamid. Phytopathologia Mediterranea, 50, 414–420.

    CAS  Google Scholar 

  • Fernández-Ortuño, D., Chen, F. P., & Schnabel, G. (2012). Resistance to pyraclostrobin and boscalid in botrytis cinerea isolates from strawberry fields in the Carolinas. Plant Disease, 96, 1198–1203.

    Article  Google Scholar 

  • FRAC (Fungicide Resistance Action Committee). (2013). Pathogen risk list. http://www.frac.info/docs/default-source/publications/pathogen-risk/pathogen-risk-list.pdf?sfvrsn=8. Accessed 13 Aug 2015.

  • FRAC (Fungicide Resistance Action Committee). (2015). FRAC Code List 2015: Fungicides sorted by mode of action (including FRAC Code numbering). http://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2015-finalC2AD7AA36764.pdf?sfvrsn=4. Accessed 24 June 2015.

  • Huangfu, Y. H., Dai, D. J., Shi, H. J., Xu, Z. H., & Zhang, C. Q. (2013). Study on resistance of Botrytis cinerea to azoxystrobin collected from fruits and vegetables in Zhejiang Province. Chinese Journal of Pesticide Science, 15(5), 504–510.

    CAS  Google Scholar 

  • Ishii, H., Fountaine, J., Chung, W. H., Kansako, M., Nishimura, K., Takahashi, K., & Oshima, M. (2009). Characterisation of QoI-resistant field isolates of Botrytis cinerea from citrus and strawberry. Pest Management Science, 65, 916–92.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. K., & Xiao, C. L. (2010). Resistance to pyraclostrobin and boscalid in populations of Botrytis cinerea from stored apples in Washington State. Plant Disease, 94, 604–612.

    Article  CAS  Google Scholar 

  • Leroux, P. (2007). Chemical control of Botrytis and its resistance to chemical fungicides. In: Y. Elad et al. (Ed.), Botrytis: Biology, Pathology and Control (pp. 195–222). Dordrecht, the Netherlands: Springer.

  • Li, X. P., Fernández-Ortuño, D., Grabke, A., & Schnabel, G. (2014). Resistance to fludioxonil in Botrytis cinerea isolates from blackberry and strawberry. Phytopathology, 104, 724–732.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. L., Liu, X. Y., Di, Y. L., Liang, H. J., & Zhu, F. X. (2015). Baseline sensitivity and control efficacy of DMI fungicide epoxiconazole against Sclerotinia sclerotiorum. European Journal of Plant Pathology, 141, 237–246.

    Article  CAS  Google Scholar 

  • Liu, J. L., Si, N. G., Chen, L., Zhang, D. M., & Zhang, Z. J. (2004). Biological activity against tomato leaf mold and application of a novel fungicide, SYP-Z048 (III). Chinese Journal of Pesticides, 43(3), 103–105.

    CAS  Google Scholar 

  • Myresiotis, C. K., Karaoglanidis, G. S., & Tzavella-Klonari, K. (2007). Resistance of Botrytis cinerea isolates from vegetable crops to anilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Disease, 91(4), 407–413.

    Article  CAS  Google Scholar 

  • Rosslenbroich, H. J., & Stuebler, D. (2000). Botrytis cinerea – history of chemical control and novel fungicides for its management. Crop Protection, 19, 557–561.

    Article  CAS  Google Scholar 

  • Russell, P. E. (2004). Sensitivity baselines in fungicide resistance research and management. FRAC Monograph No. 3. Brussels, Belgium. http://frac.sw.aa-g.de/docs/default-source/publications/monographs/monograph-3.pdf?sfvrsn=8. Accessed 4 July 2015.

  • Shao, J. X., Zhou, X. F., & Zhang, J. X. (2006). Field experimental results in controlling tomato gray mold with SYP-Z048 25 % EC. Agrochemicals, 45(7), 488–490.

    CAS  Google Scholar 

  • Si, N. G., Zhang, Z. J., Liu, J. L., Li, Z. N., Zhan, D. M., Chen, L., & Wang, L. Z. (2004a). Biological activity and application of a novel fungicide: SYP-Z048 (I). Chinese Journal of Pesticides, 43(1), 16–18.

    CAS  Google Scholar 

  • Si, N. G., Zhang, Z. J., Liu, J. L., Li, Z. N., Zhan, D. M., Chen, L., & Wang, L. Z. (2004b). Biological activity and application of a novel fungicide, SYP-Z048 (II). Chinese Journal of Pesticides, 43(2), 61–63.

    CAS  Google Scholar 

  • Topolovec-Pintarić, S. (2011). Resistance to botryticides. In: Nooruddin Thajuddin (Ed.), Fungicides - Beneficial and Harmful Aspects. ISBN: 978-953-307-451-1, (pp. 19–44) InTech. http://www.intechopen.com/books/fungicides-beneficial-and-harmful-aspects/resistance-to-botryticides. Accessed 1 Oct 2014.

  • Williamson, B., Tudzynski, B., Tudzynski, P., & van Kan, J. A. (2007). Botrytis cinerea: the cause of gray mould disease. Molecular Plant Pathology, 8(5), 561–580.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C. Q., Zhu, J. W., Wei, F. L., Liu, S. Y., & Zhu, G. N. (2007). Sensitivity of Botrytis cinerea from greenhouse vegetables to DMIs and fenhexamid. Phytoparasitica, 35(3), 300–313.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Shan Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Huang, CT. & Ji, MS. Baseline sensitivity and control efficacy of pyrisoxazole against Botrytis cinerea . Eur J Plant Pathol 146, 315–323 (2016). https://doi.org/10.1007/s10658-016-0917-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0917-7

Keywords

Navigation