Skip to main content
Log in

Mitochondrial DNA-based genetic diversity and population structure of Zymoseptoria tritici in Tunisia

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A total of 108 isolates of the wheat pathogen Zymoseptoria tritici were collected from four distinct locations of Tunisia and characterized for three mitochondrial DNA sequences to provide insight into the genetic diversity and population structure of the fungus in this country. The number of different alleles averaged over all loci within locations ranged from 3.33 to 5.67, with an average of 4.42 per location. Multilocus analysis identified 27 (25 %) distinct haplotypes among the 108 assessed isolates, revealing a high mtDNA-based clonality within the population. Three of the highlighted haplotypes occurred in all locations and nine of them covered at least two locations. Significant levels of genetic diversity were found for the whole population and within each of the sampled locations, as indicated by the Nei’s gene diversity (0.52), unbiased gene diversity (0.58) and allele richness (4.43) indices. Further analyzes using Bayesian and non-Bayesian statistical models, as well as AMOVA, showed a lack of mtDNA-based genetic structure (GST = 0.06), hence supporting previous reports on Z. tritici in Tunisia performed using nuclear-DNA markers. A high level of gene flow (Nm = 8.27) corroborates the lack of structure and suggests regular cycles of sexual reproduction, leading to allelic pool homogenization via wind-born ascospores in the Tunisian population of Z. tritici.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrinbana, M., Mozafiri, J., Shams-bakhsh, M., & Mehrabi, R. (2010). Genetic structure of Mycosphaerella graminicola populations in Iran. Plant Pathology, 59, 829–838.

    Article  Google Scholar 

  • Aguileta, G., de Vienne, D. M., Ross, O. N., Hood, M. E., Giraud, T., Petit, E., & Gabaldón, T. (2014). High variability of mitochondrial gene order among fungi. Genome Biology and Evolution, 6, 451–465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anon, A. (1996). The evaluation of forensic DNA evidence. Washington: National Academy Press. 272 pages.

    Google Scholar 

  • Bassam, B. J., Gaetano-Anolles, G., & Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196, 80–83.

    Article  CAS  PubMed  Google Scholar 

  • Boukef, S., McDonald, B. A., Yahyaoui, A., Rezgui, S., & Brunner, P. C. (2012). Frequency of mutations associated with fungicide resistance and population structure of Mycosphaerella graminicola in Tunisia. European Journal of Plant Pathology, 132, 111–122.

    Article  CAS  Google Scholar 

  • Boukef, S., Yahyaoui, A., & Rezgui, S. (2013). Geographical distribution of a specific mitochondrial haplotype of Zymoseptoria tritici. Phytopathologia Mediterranea, 52, 466–471.

    Google Scholar 

  • Carlisle, D. J., Cooke, L. R., & Brown, A. E. (2001). Phenotypic and genotypic characterization of Northern Ireland isolates of Phytophthora infestans. European Journal of Plant Pathology, 107, 291–303.

    Article  CAS  Google Scholar 

  • Correll, J. C., Harp, T. L., Guerber, J. C., Zeigler, R. S., Liu, B., Cartwright, R. D., & Lee, F. N. (2000). Characterization of Pyricularia grisea in the United States using independent genetic and molecular markers. Phytopathology, 90, 1396–1404.

    Article  CAS  PubMed  Google Scholar 

  • Czembor, P. C., & Arseniuk, E. (1999). Study of variability among monopycnidial mononpycnidiospore isolates derived from single pycnidia of Stagonospora ssp. and Septoria tritici with the use of RAPD-PCR, MP-PCR and rep-PCR techniques. Journal of Phytopathology, 147, 539–546.

    Article  Google Scholar 

  • Drabešová, J., Ryšánek, P., Brunner, P., McDonald, B. A., & Croll, D. (2013). Population genetic structure of Mycosphaerella graminicola and quinone outside inhibitor (QoI) resistance in the Czech Republic. European Journal of Plant Pathology, 135, 211–224.

    Article  Google Scholar 

  • El Chartouni, L., Tisserant, B., Siah, A., Duyme, F., Leducq, J.-B., Deweer, C., et al. (2011). Genetic diversity and population structure in French populations of Mycosphaerella graminicola. Mycologia, 103, 764–774.

    Article  PubMed  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics, 164, 1567–1587.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin, S. B., Cohen, B. A., & Fry, W. E. (1994). Panglobal distribution of a single clonal lineage of the Irish potato famine fungus. Proceedings of the National Academy of Sciences of the United States of America, 91, 11591–11595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin, S. B., Ben M’Barek, S., Dhillon, B., Wittenberg, A. H. J., Crane, C. F., Hane, J. K., et al. (2011). Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genetics, 7(6), e1002070. doi:10.1371/journal.pgen.1002070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goudet, J. (2001). FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3) (http://www2.unil.ch/popgen/softwares/fstat.htm).

  • Gurung, S., Goodwin, S. B., Kabbage, M., Bockus, W. W., & Adhikari, T. B. (2011). Genetic differentiation at microsatellite loci among populations of Mycosphaerella graminicola from California, Indiana, Kansas, and North Dakota. Phytopathology, 101, 1251–1259.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, R., Coker, R. R., & Royle, D. J. (1999). The teleomorph stage, Mycosphaerella graminicola, in epidemics of Septoria tritici blotch on winter wheat in UK. Plant Pathology, 48, 51–57.

    Article  Google Scholar 

  • Jost, L. (2008). GST and its relatives do not measure differentiation. Molecular Ecology, 17, 4015–4026.

    Article  PubMed  Google Scholar 

  • Kabbage, M., Leslie, J. F., Zeller, K. A., Hulbert, S. H., & Bockus, W. W. (2008). Genetic diversity of Mycosphaerella graminicola, the causal agent of Septoria tritici blotch, in Kansas winter wheat. Journal of Agricultural Food and Environmental Sciences, 2, 1–9.

    Google Scholar 

  • Keller, S. M., McDermott, J. M., Pettway, R. E., Wolfe, M. S., & McDonald, B. A. (1997). Gene flow and sexual reproduction in the wheat glume blotch pathogen Phaeosphaeria nodorum (anamorph Stagonospora nodorum). Phytopathology, 87, 353–358.

    Article  CAS  PubMed  Google Scholar 

  • Kudla, J., Albertazzi, F. J., Blazevic, D., Hermann, M., & Bock, R. (2002). Loss of the mitochondrial cox2 intron 1 in a family of monocotyledonous plants and utilization of mitochondrial intron sequences for the construction of a nuclear intron. Molecular Genetics and Genomics, 267, 223–230.

    Article  CAS  PubMed  Google Scholar 

  • Kurdyla, T. M., Guthrie, P. A. I., McDonald, B. A., & Appel, D. N. (1995). RFLPs in mitochondrial and nuclear DNA indicate low levels of genetic diversity in the oak wilt pathogen Ceratocystis fagacearum. Current Genetics, 27, 373–378.

    Article  CAS  PubMed  Google Scholar 

  • Linde, C., Zhan, J., & McDonald, B. A. (2002). Population structure of Mycosphaerella graminicola: from lesions to continents. Phytopathology, 92, 946–955.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. C., Cortesi, P., Double, M. L., MacDonald, W. L., & Milgroom, M. G. (1996). Diversity and multilocus genetic structure in populations of Cryphonectria parasitica. Phytopathology, 86, 1344–1351.

    Google Scholar 

  • McDonald, B. A., Zhan, J., Yarden, O., Hogan, K., Garton, J., & Pettway, R. E. (1999). The population genetics of Mycosphaerella graminicola and Phaeosphaeria nodorum. In J. A. Lucas, P. Bowyer, & H. M. Anderson (Eds.), Septoria on cereals: A study of pathosystems (pp. 44–69). Wallingford: CAB International.

    Google Scholar 

  • Meirmans, P. G., & Hedrick, P. W. (2011). Assessing population structure: FST and related measures. Molecular Ecology Resources, 11, 5–18.

    Article  PubMed  Google Scholar 

  • Naouari, M., Siah, A., Elgazzah, M., Reignault, P., & Halama, P. (2013). Tunisian population of the wheat pathogen Mycosphaerella graminicola is still fully sensitive to strobilurin fungicides. Journal of Agricultural Science and Technology, 3, 955–959.

    CAS  Google Scholar 

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70, 3321–3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., & Sekiya, T. (1989). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proceedings of the National Academy of Sciences of the United States of America, 86, 2766–2770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28, 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit, R. J., El Mousadik, A., & Pons, O. (1998). Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844–855.

    Article  Google Scholar 

  • Ponomarenko, A., Goodwin, S. B., & Kema, G. H. J. (2011). Septoria tritici blotch (STB) of wheat. Plant Health Instructor. doi:10.1094/PHI-I-2011-0407-01.

    Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Razavi, M., & Hughes, G. R. (2004a). Molecular variability of Mycosphaerella graminicola as detected by RAPD markers. Journal of Phytopathology, 152, 543–548.

    Article  CAS  Google Scholar 

  • Razavi, M., & Hughes, G. R. (2004b). Microsatellite markers provide evidence for sexual reproduction of Mycosphaerella graminicola in Saskatchewan. Genome, 47, 789–794.

    Article  CAS  PubMed  Google Scholar 

  • Sheedy, E. M., Van de Wouw, A. P., Howlett, B. J., & May, T. W. (2014). Mitochondrial microsatellite markers for the Australian ectomycorrhizal fungus Laccaria sp. A (Hydnangiaceae). Applications in Plant Sciences. doi:10.3732/apps.1300086.

    PubMed  PubMed Central  Google Scholar 

  • Siah, A., Tisserant, B., El Chartouni, L., Duyme, F., Deweer, C., Fichter, C., Sanssené, J., Durand, R., Reignault, P., & Halama, P. (2010). Mating type idiomorphs from a French population of the wheat pathogen Mycosphaerella graminicola: widespread equal distribution and low but distinct levels of molecular polymorphism. Fungal Biology, 114, 980–990.

    Article  CAS  Google Scholar 

  • Siah, A., Reignault, P., & Halama, P. (2013). Genetic diversity of Mycosphaerella graminicola isolates from a single field. Communications in Agricultural and Applied Biological Sciences, 78, 437–442.

    CAS  PubMed  Google Scholar 

  • Siah, A., Elbekali, A. Y., Ramdani, A., Reignault, P., Torriani, S. F. F., Brunner, P. C., & Halama, P. (2014). QoI resistance and mitochondrial genetic structure of Zymoseptoria tritici in Morocco. Plant Disease, 98, 1138–1144.

    Article  CAS  Google Scholar 

  • Sun, X., Kang, S., Zhang, Y., Tan, X., Yu, Y., He, H., et al. (2013). Genetic diversity and population structure of rice pathogen Ustilaginoidea virens in China. PLoS ONE, 8(9), e76879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torriani, S. F. F., Goodwin, S. B., Kema, G. H. J., Pandilinan, J. L., & McDonald, B. A. (2008). Intraspecific comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola. Fungal Genetics and Biology, 45, 628–637.

    Article  CAS  PubMed  Google Scholar 

  • Torriani, S. F. F., Brunner, P. C., McDonald, B. A., & Sierotzki, H. (2009). QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest Management Science, 65, 155–162.

    Article  CAS  PubMed  Google Scholar 

  • Torriani, S. F. F., Brunner, P. C., & McDonald, B. A. (2011). Evolutionary history of the mitochondrial genome in Mycosphaerella populations infecting bread wheat, durum wheat and wild grasses. Molecular Phylogenetics and Evolution, 58, 192–197.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J. Q., Correll, J. C., Lee, F. N., Ross, W. J., & Rhoads, D. D. (2000). Regional population diversity of Pyricularia grisea in Arkansas and the influence of host selection. Plant Disease, 84, 877–884.

    Article  Google Scholar 

  • Xu, J., Kerrigan, R. W., Callac, P., Horgen, P. A., & Anderson, J. B. (1997). Genetic structure of natural populations of Agaricus bisporus, the commercial button mushroom. Journal of Heredity, 88, 482–488.

    Article  Google Scholar 

  • Xu, J., Kerrigan, R. W., Sonnenberg, A. S., Callac, P., Horgen, P. A., & Anderson, J. B. (1998). Mitochondrial DNA variation in natural populations of the mushroom Agaricus bisporus. Molecular Ecology, 7, 19–23.

    Article  Google Scholar 

  • Yeh, F. C., Yang, R., & Boyle, T. (2000). Popgene 1.32. The user-friendly software for population genetic analysis. Molecular Biology and Biotechnology Center, Univ Alberta, and CIFOR, Canada (https://www.ualberta.ca/~fyeh/index.html).

  • Youssar, L., Grüning, B. A., Günther, S., & Hüttel, W. (2013). Characterization and phylogenetic analysis of the mitochondrial genome of Glarea lozoyensis indicates high diversity within the order Helotiales. PLoS ONE, 8(9), e74792. doi:10.1371/journal.pone.0074792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan, J., Pettway, R. E., & McDonald, B. A. (2003). The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genetics and Biology, 38, 286–297.

    Article  CAS  PubMed  Google Scholar 

  • Zhan, J., Kema, G. H. J., & McDonald, B. A. (2004). Evidence for natural selection in the mitochondrial genome of Mycosphaerella graminicola. Phytopathology, 94, 261–267.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by financial supports from the University of El-Manar (Tunis, Tunisia) and the Higher Institute of Agriculture (Lille, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Halama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naouari, M., Siah, A., Elgazzah, M. et al. Mitochondrial DNA-based genetic diversity and population structure of Zymoseptoria tritici in Tunisia. Eur J Plant Pathol 146, 305–314 (2016). https://doi.org/10.1007/s10658-016-0915-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0915-9

Keywords

Navigation