Advertisement

European Journal of Plant Pathology

, Volume 146, Issue 1, pp 85–94 | Cite as

Intercepted isolates of Xylella fastidiosa in Europe reveal novel genetic diversity

  • G. Loconsole
  • M. Saponari
  • D. Boscia
  • G. D’Attoma
  • M. Morelli
  • G. P. Martelli
  • R. P. P. Almeida
Article

Abstract

After the first confirmed outbreak of Xylella fastidiosa in the European Union (EU), associated with an olive disease denoted olive quick decline syndrome, mandatory surveys are now carried out in the member States and inspections increased at EU entry points such as ports. Such activities led to the interception of X. fastidiosa-infected coffee plants in consignments originating from Central America. Similarly, the geographic expansion of the olive decline epidemic area of the Apulia region (southern Italy) prompted investigations to identify new host plants. Here we report the interception of three novel bacterial sequence types in Italy, based on multi-locus sequence typing, that cluster with different X. fastidiosa subspecies, illustrating the risk of the introduction of additional pathogen genetic diversity into Europe. In the epidemic area of Apulia, new foci as well as host plant species positive with X. fastidiosa, including cherry, myrtleleaf and rosemary, were found to be all infected with the same sequence type of this bacterium (ST53, or CoDiRO strain). This work highlights the limited knowledge of X. fastidiosa phylogenetic and phenotypic diversity, the risk of novel X. fastidiosa introductions via contaminated plant material, and corroborates other studies indicating that the Apulia epidemic emerged from a single introduction of this pathogen into the region.

Keywords

Xylella fastidiosa Olive disease Pierce’s disease, vector-borne 

Notes

Acknowledgments

This research was supported by grants from the Regional Plant Health Service of Apulia. We thank Alessandra Calzolari (Plant health Service Emilia Romagna, Italy), Valeria Gualandri (Fondazione Edmund Mach, S. Michele all’Adige (TN), Italy) and Anna Zelger (Provincia Autonoma di Bolzano − Alto Adige, Italy) for providing the coffee isolates. We thank Len Nunney for working with us on the new MLST alleles and STs. Work by RPPA was supported by the California Agriculture Experiment Station.

Compliance with ethical standards

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the authors.

Conflict of interest

The authors declare no conflict of interest.

References

  1. Almeida, R.P.P., & Nunney, L. (2015). How do plant diseases caused by Xylella fastidiosa emerge? Plant Disease, http://dx.doi.org/10.1094/PDIS-02-15-0159-FE.
  2. Almeida, R. P. P., & Purcell, A. H. (2003). Biological traits of Xylella fastidiosa strains from grapes and almonds. Applied and Environmental Microbiology, 69, 7447–7452.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Almeida, R. P. P., Pereira, E. F., Purcell, A. H., & Lopes, J. R. S. (2001). Multiplication and movement of a citrus strain of Xylella fastidiosa within sweet Orange. Plant Disease, 85, 382–386.CrossRefGoogle Scholar
  4. Almeida, R. P. P., Blua, M. J., Lopes, J. R. S., & Purcell, A. H. (2005). Vector transmission of Xylella fastidiosa: applying fundamental knowledge to generate disease management strategies. Annals of the Entomological Society of America, 98, 775–786.CrossRefGoogle Scholar
  5. Almeida, R. P. P., Nascimento, F. E., Chau, J., Prado, S. S., Tsai, C. W., Lopes, S. A., & Lopes, J. R. S. (2008). Genetic structure and biology of Xylella fastidiosa causing disease in citrus and coffee in Brazil. Applied and Environmental Microbiology, 74, 3690–3701.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Amanifar, N., Taghavi, M., Izadpanah, K., & Babaei, G. (2014). Isolation and pathogenicity of Xylella fastidiosa from grapevine and almond in Iran. Phytopathologia Mediterranea, 53, 318–327.Google Scholar
  7. Bergsma-Vlami, M., van de Bilt, J. L. J., Tjou-Tam-Sin, N. N. A., van de Vossenberg, B. T. L. H., & Westenberg, M. (2015). Xylella fastidiosa in Coffea arabica ornamental plants imported from Costa Rica and Honduras in The Netherlands. Journal of Plant Pathology, 97, 395.Google Scholar
  8. Berisha, B., Chen, Y. D., Zhang, G. Y., Xu, B. Y., & Chen, T. A. (1998). Isolation of Pierce’s disease bacteria from grapevines in Europe. European Journal of Plant Pathology, 104, 427–433.CrossRefGoogle Scholar
  9. Cariddi, C., Saponari, M., Boscia, D., De Stradis, A., Loconsole, G., Nigro, F., Porcelli, F., Potere, O., & Martelli, G. P. (2014). Isolation of a Xylella fastidiosa strain infecting olive and oleander in Apulia, Italy. Journal of Plant Pathology, 96, 1–5.Google Scholar
  10. Daugherty, M. P., Lopes, J. R. S., & Almeida, R. P. P. (2010). Strain-specific alfalfa water stress induced by Xylella fastidiosa. European Journal of Plant Pathology, 127, 333–340.CrossRefGoogle Scholar
  11. Elbeaino, T., Valentini, F., Abou Kubaa, R., Moubarak, P., Yaseen, T., & Digiaro, M. (2014). Multilocus sequence typing of Xylella fastidiosa isolated from olive affected by “olive quick decline syndrome” in Italy. Phytopathologia Mediterranea, 53, 533–542.Google Scholar
  12. European and Mediterranean Plant Protection Organization (2015). EPPO reporting service. No. 9, Paris, 2015–09, 21p.Google Scholar
  13. European Food Safety Authority (2015a). Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA Journal, 13, 3989[262 pp]. doi: 10.2903/j.efsa.2015.3989.CrossRefGoogle Scholar
  14. European Food Safety Authority (2015b). Categorisation of plants for planting, excluding seeds, according to the risk of introduction of Xylella fastidiosa. EFSA Journal, 13, 4061. doi: 10.2903/j.efsa.2015.4061.CrossRefGoogle Scholar
  15. Hudson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.CrossRefGoogle Scholar
  16. Jolley, K. A., Chan, M. S., Martin, C. J., & Maiden, M. C. (2004). mlstdbNet – distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics, 5, 86.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kung, S. H., & Almeida, R. P. P. (2011). Natural competence and recombination in the plant pathogen Xylella fastidiosa. Applied and Environmental Microbiology, 77, 5278–5284.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Legendre, B., Mississipi, S., Oliver, V., Morel, E., Crouzillat, D., Durand, K., Portier, P., Poliakoff, F., & Jacques, M. A. (2014). Identification and characterisation of Xylella fastidiosa isolated from coffee plants in France. Journal of Plant Pathology, 96, S4.100.Google Scholar
  19. Leu, L. S., & Su, C. C. (1993). Isolation, cultivation and pathogenicity of Xylella fastidiosa, the causal bacterium of pear leaf scorch disease in Taiwan. Plant Disease, 77, 642–646.CrossRefGoogle Scholar
  20. Loconsole, G., Boscia, D., Palmisano, F., Savino, V., Potere, O., Martelli, G. P., & Saponari, M. (2014). A Xylella fastidiosa strain with unique biology and phylogeny is associated with a severe disease of olive in Southern Apulia. Journal of Plant Pathology, 96, S4.38.Google Scholar
  21. Martelli, G. P., Boscia, D., Porcelli, F., & Saponari, M. (2015). The olive quick decline syndrome in south-East Italy: a threatening phytosanitary emergency. European Journal of Plant Pathology. doi: 10.1007/s10658-015-0784-7.Google Scholar
  22. Martin, D., & Rybicki, E. (2000). RDP: detection of recombination amongst aligned sequences. Bioinformatics, 16, 562–563.CrossRefPubMedGoogle Scholar
  23. McElrone, A. J., Sherald, J. L., & Forseth, I. N. (2003). Interactive effects of water stress and xylem-limited bacterial infection on the water relations of a host vine. Journal of Experimental Botany, 54, 419–430.CrossRefPubMedGoogle Scholar
  24. Nunes, L. R., Rosato, Y. B., Muto, N. H., Yanai, G. M., Da Silva, V. S., Leite, D. B., Gonçalves, E. R., De Souza, A. A., Coletta-Filho, H. D., Machado, M. A., Lopes, S. A., & De Oliveira, R. C. (2003). Microarray analyses of Xylella fastidiosa provide evidence of coordinated transcription control of laterally transferred elements. Genome Research, 13, 570–578.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nunney, L., Yuan, X. L., Bromley, R., Hartung, J., Montero-Astua, M., Moreira, L., Ortiz, B., & Stouthamer, R. (2010). Population genomic analysis of a bacterial plant pathogen: novel insight into the origin of Pierce’s disease of grapevine in the US. PloS One, 5, e15488. doi: 10.1371/journal.pone.0015488.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nunney, L., Yuan, X., Bromley, R. E., & Stouthamer, R. (2012). Detecting genetic introgression: high levels of intersubspecific recombination found in Xylella fastidiosa in Brazil. Applied and Environmental Microbiology, 78, 4702–4714.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Nunney, L., Vickerman, D. B., Bromley, R. E., Russell, S. A., Hartman, J. R., Morano, L. D., & Stouthamer, R. (2013). Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States. Applied and Environmental Microbiology, 79, 2189–2200.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nunney, L., Ortiz, B., Russell, S. A., Ruiz Sa, R., & Stouthamer, R. (2014a). The complex biogeography of the plant pathogen Xylella fastidiosa: genetic evidence of introductions and subspecific introgression in Central America. PloS One, 9, e112463.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nunney, L., Schuenzel, E. L., Scally, M., Bromley, R. E., & Stouthamer, R. (2014b). Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry. Applied and Environmental Microbiology, 80, 3025–3033.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nunney, L., Hopkins, D. L., Morano, L. D., Russell, S. E., & Stouthamer, R. (2014c). Intersubspecific recombination in Xylella fastidiosa strains native to the United States: infection of novel hosts associated with an unsuccessful invasion. Applied and Environmental Microbiology, 80, 1159–1169.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.CrossRefPubMedGoogle Scholar
  32. Purcell, A. H. (1997). Xylella fastidiosa, a regional problem or global threat? Journal of Plant Pathology, 79, 99–105.Google Scholar
  33. Purcell, A. H., & Saunders, S. R. (1999). Glassy-winged sharpshooters expected to increase plant disease. California Agriculture, 53, 26–27.CrossRefGoogle Scholar
  34. Rathé, A. A., Pilkington, L. J., Gurr, G. M., Hoddle, M. S., Daugherty, M. P., Constable, F. E., Luck, J. E., Powell, K. S., Fletcher, M. J., & Edwards, O. R. (2012). Incursion preparedness: anticipating the arrival of an economically important plant pathogne Xylella fastidiosa Wells (proteobacteria: xanthomonadaceae) and the insect vector Homalodisca vitripennis (germar) (hemiptera: cicadellidae) in Australia. Austral Entomology, 51, 209–220.CrossRefGoogle Scholar
  35. Saponari, M., Boscia, D., Nigro, F., & Martelli, G. P. (2013). Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). Journal of Plant Pathology, 95, 668.Google Scholar
  36. Saponari, M., Boscia, D., Loconsole, G., Palmisano, F., Savino, V., Potere, O., & Martelli, G. P. (2014). New hosts of Xylella fastidiosa strain CoDiRO in Apulia. Journal of Plant Pathology, 96, 603–611.Google Scholar
  37. Su, C. C., Chang, C. J., Chang, C. M., Shih, H. T., Tzeng, K. C., Jan, F. J., Kao, C. W., & Deng, W. L. (2013). Pierce’s disease of grapevines in Taiwan: isolation, cultivation and pathogenicity of Xylella fastidiosa. Journal of Phytopathology, 161, 389–396.CrossRefGoogle Scholar
  38. Swofford, D. L. (2002). PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland: Sinauer Associates.Google Scholar
  39. Yuan, X., Morano, L., Bromley, R., Spring-Pearson, S., Stouthamer, R., & Nunney, L. (2010). Multilocus sequence typing of Xylella fastidiosa causing Pierce’s disease and oleander Leaf Scorch in the United States. Phytopathology, 100, 601–611.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • G. Loconsole
    • 1
    • 2
  • M. Saponari
    • 1
  • D. Boscia
    • 1
  • G. D’Attoma
    • 1
    • 2
  • M. Morelli
    • 1
  • G. P. Martelli
    • 2
  • R. P. P. Almeida
    • 3
  1. 1.Consiglio Nazionale delle RicercheIstituto per la Protezione Sostenibile delle Piante, Sede Secondaria di BariBariItaly
  2. 2.Dipartimento di Scienze del Suolo, della Pianta e degli AlimentiUniversità degli Studi di Bari Aldo MoroBariItaly
  3. 3.Department of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyUSA

Personalised recommendations