European Journal of Plant Pathology

, Volume 145, Issue 2, pp 331–343 | Cite as

Molecular characterization of lipoxygenase genes and their expression analysis against biotic and abiotic stresses in Panax ginseng

  • Kwi-Sik Bae
  • Shadi RahimiEmail author
  • Yu-Jin Kim
  • Balusamy Sri Renuka Devi
  • Altanzul Khorolragchaa
  • Johan Sukweenadhi
  • Jeniffer Silva
  • Davaajargal Myagmarjav
  • Deok-Chun YangEmail author


Lipoxygenase (LOX) belongs to a family of non-heme-iron-containing fatty acid dioxygenases that are widely distributed in plants and animals. LOX involved in the synthesis of jasmonic acid and six-carbon (C6) volatiles which is necessary for plant growth and responses to a wide range of biotic and abiotic stresses. We have isolated and characterized LOX cDNA clones from Panax ginseng Meyer. From their deduced amino acid sequences, two diverse classes of 9-LOX (LOX1, LOX2, and LOX3) and 13-LOX (LOX4, LOX5) are defined in P. ginseng. A GenBank Blast X search revealed that the deduced amino acid of PgLOXs share a high degree of homology with LOX from other plants and mammals especially in three distinct motifs; motif1 harboring iron binding regions, motif2 and motif3. Chloroplast localization was predicted for PgLOX5. PgLOXs displayed organ-specific expression, highly expressed in aerial parts of the plant such as 3-year old flower, stem and leaf tissues. PgLOXs mRNAs were elevated strongly by bacterial infection. Expression of PgLOXs was differentially induced in ginseng not only by mechanical damage and methyl jasmonate but also after exposure to withholding water. Ginseng 13-LOXs positively respond to wounding that may involve in production of C6 volatiles and jasmonic acid at the wounded sites. However, the higher expression of PgLOX3 by water deficit and 82 % of the nucleotide sequence identity with the EST from severe drought-stressed leaves of Populus (CU229089.1) at +6371 bp downstream of PgLOX3 genomic DNA structure can suggest drought tolerance role for PgLOX3. Ginseng LOX genes have different expression pattern which may suggest different specific function against various environmental stresses.


Abiotic stress Biotic stress Gene expression Jasmonic acid Lipoxygenase Panax ginseng 



allene oxide cyclase


allene oxide synthase


expressed sequence tag


hydroperoxide lyase


(13S)-hydroperoxyoctadecadienoic acid


(9S)-hydroperoxyoctadecadienoic acid


indole-3-butyric acid


jasmonic acid




methyl jasmonate


(9S,13S)-12-oxo phytodienoic acid


Pseudomonas syringae pv tomato strain DC3000


polyunsaturated fatty acids


reverse transcriptase-polymerase chain reaction.



This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) by the Ministry of Education (2013R1A1A2064430), Republic of Korea (YJ Kim) and iPET (312064-03-1-HD040), Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries, Republic of Korea (DC Yang).

Compliance with ethical standards

Conflict of interest


Supplementary material

10658_2015_847_MOESM1_ESM.pdf (119 kb)
Online Resource 1 (PDF 118 kb)
10658_2015_847_MOESM2_ESM.pdf (90 kb)
Online Resource 2 (PDF 90 kb)
10658_2015_847_MOESM3_ESM.pdf (132 kb)
Online Resource 3 (PDF 131 kb)


  1. Andreou, A., & Feussner, I. (2009). Lipoxygenases–structure and reaction mechanism. Phytochemistry, 70(13), 1504–1510.CrossRefPubMedGoogle Scholar
  2. Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., … Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic acids research, gkp335.Google Scholar
  3. Bate, N. J., & Rothstein, S. J. (1998). C6‐volatiles derived from the lipoxygenase pathway induce a subset of defense‐related genes. The Plant Journal, 16(5), 561–569.CrossRefPubMedGoogle Scholar
  4. Blée, E., & Joyard, J. (1996). Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiology, 110(2), 445–454.PubMedPubMedCentralGoogle Scholar
  5. Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z., & Grierson, D. (2004). Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiology, 136(1), 2641–2651.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Corbin, J. A., Evans, J. H., Landgraf, K. E., & Falke, J. J. (2007). Mechanism of specific membrane targeting by C2 domains: localized pools of target lipids enhance Ca2+ affinity. Biochemistry, 46(14), 4322–4336.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Croft, K. P., Juttner, F., & Slusarenko, A. J. (1993). Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiology, 101(1), 13–24.PubMedPubMedCentralGoogle Scholar
  8. Dabbou, S., Brahmi, F., Selvaggini, R., Chehab, H., Dabbou, S., Taticchi, A., … Hammami, M. (2011). Contribution of irrigation and cultivars to volatile profile and sensory attributes of selected virgin olive oils produced in Tunisia. International Journal of Food Science & Technology, 46(9), 1964–1976.Google Scholar
  9. De León, I. P., Sanz, A., Hamberg, M., & Castresana, C. (2002). Involvement of the Arabidopsisα‐DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. The Plant Journal, 29(1), 61–72.CrossRefPubMedGoogle Scholar
  10. Devi Balusamy, S. R., Rahimi, S., Sukweenadhi, J., Kim, Y. J., Yang, D. C. (2015). Exogenous methyl jasmonate prevents necrosis caused by mechanical wounding and increased terpenoid biosynthesis in Panax ginseng. Plant Cell, Tissue and Organ Culture, 123(2), 341–348.Google Scholar
  11. Emanuelsson, O., Nielsen, H., & Von Heijne, G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science, 8(05), 978–984.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Feussner, I., & Kindl, H. (1992). A lipoxygenase is the main lipid body protein in cucumber and soybean cotyledons during the stage of triglyceride mobilization. FEBS Letters, 298(2), 223–225.CrossRefPubMedGoogle Scholar
  13. Feussner, I., & Kindl, H. (1994). Particulate and soluble lipoxygenase isoenzymes. Planta, 194(1), 22–28.CrossRefGoogle Scholar
  14. Feussner, I., & Wasternack, C. (2002). The lipoxygenase pathway. Annual Review of Plant Biology, 53(1), 275–297.CrossRefPubMedGoogle Scholar
  15. Feussner, I., Hause, B., Vörös, K., Parthier, B., & Wasternack, C. (1995). Jasmonate‐induced lipoxygenase forms are localized in chloroplasts of barley leaves (Hordeum vulgare cv. Salome). The Plant Journal, 7(6), 949–957.CrossRefGoogle Scholar
  16. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571–607). Humana Press.Google Scholar
  17. Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer applications in the biosciences: CABIOS, 11(6), 681–684.PubMedGoogle Scholar
  18. Gómez-Rico, A., Salvador, M. D., La Greca, M., & Fregapane, G. (2006). Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. Cv. Cornicabra) with regard to fruit ripening and irrigation management. Journal of Agricultural and Food Chemistry, 54(19), 7130–7136.CrossRefPubMedGoogle Scholar
  19. Grayburn, W. S., Schneider, G. R., Hamilton-Kemp, T. R., Bookjans, G., Ali, K., & Hildebrand, D. F. (1991). Soybean leaves contain multiple lipoxygenases. Plant Physiology, 95(4), 1214–1218.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Griffiths, A., Prestage, S., Linforth, R., Zhang, J., Taylor, A., & Grierson, D. (1999). Fruit-specific lipoxygenase suppression in antisense-transgenic tomatoes. Postharvest Biology and Technology, 17(3), 163–173.CrossRefGoogle Scholar
  21. Gundlach, H., Müller, M. J., Kutchan, T. M., & Zenk, M. H. (1992). Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceedings of the National Academy of Sciences, 89(6), 2389–2393.CrossRefGoogle Scholar
  22. Heitz, T., Bergey, D. R., & Ryan, C. A. (1997). A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiology, 114(3), 1085–1093.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hornung, E., Walther, M., Kühn, H., & Feussner, I. (1999). Conversion of cucumber linoleate 13-lipoxygenase to a 9-lipoxygenating species by site-directed mutagenesis. Proceedings of the National Academy of Sciences, 96(7), 4192–4197.CrossRefGoogle Scholar
  24. Howe, G. A., & Jander, G. (2008). Plant immunity to insect herbivores. Annual Review of Plant Biology, 59, 41–66.CrossRefPubMedGoogle Scholar
  25. Hwang, I. S., & Hwang, B. K. (2010). The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiology, 152(2), 948–967.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Keegstra, K., & Cline, K. (1999). Protein import and routing systems of chloroplasts. The Plant Cell Online, 11(4), 557–570.CrossRefGoogle Scholar
  27. Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132.CrossRefPubMedGoogle Scholar
  28. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408.CrossRefPubMedGoogle Scholar
  29. Maccarrone, M., Veldink, G. A., Agro, A. F., & Vliegenthart, J. F. (1995). Modulation of soybean lipoxygenase expression and membrane oxidation by water deficit. FEBS Letters, 371(3), 223–226.CrossRefPubMedGoogle Scholar
  30. Maucher, H., Hause, B., Feussner, I., Ziegler, J., & Wasternack, C. (2000). Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue specific regulation in seedling development. The Plant Journal, 21(2), 199–213.CrossRefPubMedGoogle Scholar
  31. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.CrossRefGoogle Scholar
  32. Nellen, A., Rojahn, B., & Kindl, H. (1995). Lipoxygenase forms located at the plant plasma membrane. Zeitschrift für Naturforschung, 50c, 29–36.Google Scholar
  33. Park, S. W., Li, W., Viehhauser, A., He, B., Kim, S., Nilsson, A. K., … Lawrence, C. B. (2013). Cyclophilin 20–3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proceedings of the National Academy of Sciences, 110(23), 9559–9564.Google Scholar
  34. Porta, H., Rueda-Benítez, P., Campos, F., Colmenero-Flores, J. M., Colorado, J. M., Carmona, M. J., … Rocha-Sosa, M. (1999). Analysis of lipoxygenase mRNA accumulation in the common bean (Phaseolus vulgaris L.) during development and under stress conditions. Plant and cell physiology, 40(8), 850–858.Google Scholar
  35. Rahimi, S., Devi, B. S. R., Khorolragchaa, A., Kim, Y. J., Kim, J. H., Jung, S. K., & Yang, D. C. (2014). Effect of salicylic acid and yeast extract on the accumulation of jasmonic acid and sesquiterpenoids in Panax ginseng adventitious roots. Russian Journal of Plant Physiology, 61(6), 811–817.CrossRefGoogle Scholar
  36. Rahimi, S., Kim, Y. J., Yang, D. C. (2015a). Production of ginseng saponins: elicitation strategy and signal transductions. Applied microbiology and biotechnology, 99(17), 6987-96.Google Scholar
  37. Rahimi, S., Kim, Y. J., Devi, B. S. R., Oh, J. Y., Kim, S. Y., Kwon, W. S., & Yang, D. C. (2015b). Sodium nitroprusside enhances the elicitation power of methyl jasmonate for ginsenoside production in Panax ginseng roots. Research on Chemical Intermediates. doi: 10.1007/s11164-015-2188-x.
  38. Royo, J., Vancanneyt, G., Pérez, A. G., Sanz, C., Störmann, K., Rosahl, S., & Sánchez-Serrano, J. J. (1996). Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. Journal of Biological Chemistry, 271(35), 21012–21019.CrossRefPubMedGoogle Scholar
  39. Sathiyamoorthy, S., In, J. G., Gayathri, S., Kim, Y. J., & Yang, D. C. (2009). Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C.A. Meyer roots. Molecular Biology Reports, 46(7), 932–939.Google Scholar
  40. Scott, R. J., Spielman, M., & Dickinson, H. G. (2004). Stamen structure and function. The Plant Cell Online, 16(suppl 1), S46–S60.CrossRefGoogle Scholar
  41. Servili, M., Esposto, S., Lodolini, E., Selvaggini, R., Taticchi, A., Urbani, S., … Gucci, R. (2007). Irrigation effects on quality, phenolic composition, and selected volatiles of virgin olive oils cv. Leccino. Journal of Agricultural and Food Chemistry, 55(16), 6609–6618.Google Scholar
  42. Shen, J., Tieman, D., Jones, J. B., Taylor, M. G., Schmelz, E., Huffaker, A., … Klee, H. J. (2014). A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. Journal of experimental botany, 65(2), 419–428.Google Scholar
  43. Stefanoudaki, E., Williams, M., Chartzoulakis, K., & Harwood, J. (2009). Effect of irrigation on quality attributes of olive oil. Journal of Agricultural and Food Chemistry, 57(15), 7048–7055.CrossRefPubMedGoogle Scholar
  44. Stephenson, L. C., Bunker, T. W., Dubbs, W. E., & Grimes, H. D. (1998). Specific soybean lipoxygenases localize to discrete subcellular compartments and their mRNAs are differentially regulated by source-sink status. Plant Physiology, 116(3), 923–933.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100(4), 681–697.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Weber, H. (2002). Fatty acid-derived signals in plants. Trends in Plant Science, 7(5), 217–224.CrossRefPubMedGoogle Scholar
  47. Yang, X. Y., Jiang, W. J., & Yu, H. J. (2012). The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.). International journal of molecular sciences, 13(2), 2481–2500.Google Scholar
  48. Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283–333.CrossRefPubMedGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2016

Authors and Affiliations

  • Kwi-Sik Bae
    • 2
  • Shadi Rahimi
    • 2
    Email author
  • Yu-Jin Kim
    • 2
  • Balusamy Sri Renuka Devi
    • 2
  • Altanzul Khorolragchaa
    • 2
  • Johan Sukweenadhi
    • 2
  • Jeniffer Silva
    • 2
  • Davaajargal Myagmarjav
    • 2
  • Deok-Chun Yang
    • 1
    • 2
    Email author
  1. 1.Department of Oriental Medicinal BiotechnologyCollege of Life Sciences, Kyung Hee UniversityYonginRepublic of Korea
  2. 2.Graduate School of Biotechnology and Ginseng BankCollege of Life Sciences, Kyung Hee UniversityYonginRepublic of Korea

Personalised recommendations