Skip to main content
Log in

New kid on the block – the clubroot pathogen genome moves the plasmodiophorids into the genomic era

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Plasmodiophora brassicae causes clubroot on cruciferous plants and causes worldwide huge economical losses on important Brassica crops. P. brassicae infection produces large root galls, the clubroots, which can also affect the upper plant parts by reduced water and nutrient uptake and redirection of assimilates from leaves to roots. P. brassicae is an obligate biotrophic protist in the plasmodiophorids within the eukaryote supergroup of Rhizaria and is unrelated to other known plant pathogens. Plasmodiophorids can be parasites of plants and oomycetes. The recently released genome of P. brassicae is only the third in the poorly studied Rhizaria and the first plant pathogenic genome of this eukaryotic group. The P. brassicae genome was estimated to be 25.5 Mb in size and predicted to contain 9730 gene models. A transcriptome of P. brassicae and Spongospora subterranea, the potato scab pathogen was also presented. Consequently, for the first time large scale data for a eukaryotic plant pathogen group outside the fungi and oomycetes are now available. This review highlights selected characteristics of the P. brassicae genome including molecular events shown or predicted to take place in each phase of its life-cycle, such as manipulation of: 1) host primary metabolism, 2) plant hormone homeostasis, and 3) plant defense. Further, future directions and challenges in the P. brassicae and plasmodiophorid genomic research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adl, S. M., Simpson, A. G. B., Lane, C. E., Lukeš, J., Bass, D., Bowser, S. S., et al. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology, 59, 429–514. doi:10.1111/j.1550-7408.2012.00644.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal, A., Kaul, V., Faggian, R., Rookes, J. E., Ludwig-Müller, J., & Cahill, D. M. (2011). Analysis of global host gene expression during the primary phase of the Arabidopsis thaliana-Plasmodiophora brassicae interaction. Functional Plant Biology, 38, 462–478. doi:10.1071/Fp11026.

    Article  CAS  Google Scholar 

  • Aist, J. R., & Williams, P. H. (1971). Cytology and kinetics of cabbage root hair penetration by Plasmodiophora brassicae. Canadian Journal of Botany, 49, 2023–2034.

    Article  Google Scholar 

  • Barr, K. J., & Asher, M. J. C. (1996). Studies on the life-cycle of Polymyxa betae in sugar beet roots. Mycological Research, 100, 203–208.

    Article  Google Scholar 

  • Berney, C., Romac, S., Mahe, F., Santini, S., Siano, R., & Bass, D. (2013). Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME Journal, 7, 2387–2399. doi:10.1038/Ismej.2013.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee, S., Hiller, N. L., Liolios, K., Win, J., Kanneganti, T. D., Young, C., et al. (2006). The malarial host-targeting signal is conserved in the Irish potato famine pathogen. Plos Pathogens, 2, Artn E50. doi:10.1371/Journal.Ppat.0020050.

    Article  Google Scholar 

  • Braselton, J. P. (1982). Karyotypic analysis of Plasmodiophora brassicae based on serial thin-sections of pachytene nuclei. Canadian Journal of Botany, 60, 403–408.

    Article  Google Scholar 

  • Braselton, J. P. (1995). Current status of the plasmodiophorids. Critical Reviews in Microbiology, 21, 263–275. doi:10.3109/10408419509113543.

    Article  CAS  PubMed  Google Scholar 

  • Brodmann, D., Schuller, A., Ludwig-Müller, J., Aeschbacher, R. A., Wiemken, A., Boller, T., et al. (2002). Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Molecular Plant-Microbe Interactions, 15, 693–700. doi:10.1094/Mpmi.2002.15.7.693.

    Article  CAS  PubMed  Google Scholar 

  • Bryan, R. J., Trese, A. T., & Braselton, J. P. (1996). Molecular karyotypes for the obligate, intracellular, plant pathogens, Plasmodiophora brassicae and Spongospora subterranea. Mycologia, 88, 358–360. doi:10.2307/3760876.

    Article  CAS  Google Scholar 

  • Buczacki, S. T., & Moxham, S. E. (1983). Structure of the resting spore wall of Plasmodiophora brassicae revealed by electron-microscopy and chemical digestion. Transactions of the British Mycological Society, 81, 221–231.

    Article  Google Scholar 

  • Buczacki, S. T., Toxopeus, H., Mattusch, P., Johnston, T. D., Dixon, G. R., & Hobolth, L. A. (1975). Study of physiologic specialization in Plasmodiophora brassicae - proposals for attempted rationalization through an international approach. Transactions of the British Mycological Society, 65, 295–303.

    Article  Google Scholar 

  • Bulman, S., & Braselton, J. P. (2014). Rhizaria: Phytomyxea. In D. J. McLaughlin, & J. W. Spatafora (Eds.), Systematics and evolution (Vol. 7A, pp. 99–112, The Mycota): Springer Berlin Heidelberg.

  • Bulman, S., Siemens, J., Ridgway, H. J., Eady, C., & Conner, A. J. (2006). Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae. Fems Microbiology Letters, 264, 198–204. doi:10.1111/J.1574-6968.2006.00466.X.

    Article  CAS  PubMed  Google Scholar 

  • Bulman, S., Ridgway, H. J., Eady, C., & Conner, A. J. (2007). Intron-rich gene structure in the intracellular plant parasite Plasmodiophora brassicae. Protist, 158, 423–433. doi:10.1016/J.Protis.2007.04.005.

    Article  CAS  PubMed  Google Scholar 

  • Bulman, S., Candy, J. M., Fiers, M., Lister, R., Conner, A. J., & Eady, C. C. (2011). Genomics of biotrophic, plant-infecting Plasmodiophorids using in vitro dual cultures. Protist, 162, 449–461. doi:10.1016/J.Protis.2010.09.004.

    Article  CAS  PubMed  Google Scholar 

  • Burki, F. (2014). The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harbor Perspectives in Biology, 6. doi:10.1101/cshperspect.a016147.

  • Burki, F., & Keeling, P. J. (2014). Rhizaria. Current Biology, 24, R103–R107. doi:10.1016/j.cub.2013.12.025.

    Article  CAS  PubMed  Google Scholar 

  • Claxton, J. R., Potter, U. J., Blakesley, D., & Clarkson, J. M. (1996). An ultrastructural study of the interaction between Spongospora subterranea f sp nasturtii and watercress roots. Mycological Research, 100, 1431–1439.

    Article  Google Scholar 

  • Cook, W. R. I., & Schwartz, E. J. (1930). The life-history, cytology and method of infection of Plasmodiophora brassicae Woron., the cause of finger-and-toe disease of cabbages and other crucifers. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 218, 283–314. doi:10.1098/rstb.1930.0006.

    Article  Google Scholar 

  • Curtis, B. A., Tanifuji, G., Burki, F., Gruber, A., Irimia, M., Maruyama, S., et al. (2012). Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 492, 59–65. doi:10.1038/nature11681.

    Article  CAS  PubMed  Google Scholar 

  • Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., et al. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434, 980–986. doi:10.1038/Nature03449.

    Article  CAS  PubMed  Google Scholar 

  • del Campo, J., Sieracki, M. E., Molestina, R., Keeling, P., Massana, R., & Ruiz-Trillo, I. (2014). The others: our biased perspective of eukaryotic genomes. Trends in Ecology & Evolution, 29, 252–259. doi:10.1016/J.Tree.2014.03.006.

    Article  Google Scholar 

  • Desoignies, N., Carbonell, J., Moreau, J. S., Conesa, A., Dopazo, J., & Legreve, A. (2014). Molecular interactions between sugar beet and Polymyxa betae during its life cycle. Annals of Applied Biology, 164, 244–256.

    Article  CAS  Google Scholar 

  • Dixon, G. R. (2009). The occurrence and economic impact of Plasmodiophora brassicae and clubroot disease. Journal of Plant Growth Regulation, 28, 194–202. doi:10.1007/S00344-009-9090-Y.

    Article  CAS  Google Scholar 

  • Dixon, G. R. (2014). Special issue: clubroot (Plasmodiophora brassicae Woronin) - an agricultural and biological challenge worldwide. Canadian Journal of Plant Pathology, 36, 5–18. doi:10.1080/07060661.2013.875487.

    Article  Google Scholar 

  • Donald, E. C., & Porter, I. J. (2004). A sand-solution culture technique used to observe the effect of calcium and pH on root hair and cortical stages of infection by Plasmodiophora brassicae. Australasian Plant Pathology, 33, 585–589. doi:10.1071/Ap04068.

    Article  CAS  Google Scholar 

  • Dou, D. L., Kale, S. D., Wang, X., Jiang, R. H. Y., Bruce, N. A., Arredondo, F. D., et al. (2008). RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell, 20, 1930–1947. doi:10.1105/Tpc.107.056093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duplessis, S., Cuomo, C. A., Lin, Y. C., Aerts, A., Tisserant, E., Veneault-Fourrey, C., et al. (2011). Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences of the United States of America, 108, 9166–9171. doi:10.1073/Pnas.1019315108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbein, A. D., Pan, Y. T., Pastuszak, I., & Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology, 13, 17R–27R. doi:10.1093/Glycob/Cwg047.

    Article  CAS  PubMed  Google Scholar 

  • Fähling, M., Graf, H., & Siemens, J. (2003). Pathotype separation of Plasmodiophora brassicae by the host plant. Journal of Phytopathology, 151, 425–430. doi:10.1046/J.1439-0434.2003.00744.X.

    Article  Google Scholar 

  • Fähling, M., Graf, H., & Siemens, J. (2004). Characterization of a single-spore isolate population of Plasmodiophora brassicae resulting from a single club. Journal of Phytopathology, 152, 438–444. doi:10.1111/J.1439-0434.2004.00868.X.

    Article  Google Scholar 

  • Falloon, R. E., Merz, U., Butler, R. C., Curtin, D., Lister, R. A., & Thomas, S. M. (2015). Root infection of potato by Spongospora subterranea: knowledge review and evidence for decreased plant productivity. Plant Pathology. doi:10.1111/ppa.12419.

    Google Scholar 

  • Feng, J., Hwang, R., Hwang, S. F., Strelkov, S. E., Gossen, B. D., Zhou, Q. X., et al. (2010). Molecular characterization of a serine protease Pro1 from Plasmodiophora brassicae that stimulates resting spore germination. Molecular Plant Pathology, 11, 503–512. doi:10.1111/J.1364-3703.2010.00623.X.

    Article  CAS  PubMed  Google Scholar 

  • Feng, J., Hwang, S. F., & Strelkov, S. E. (2012). Analysis of expressed sequence tags derived from a compatible Plasmodiophora brassicae-canola interaction. Canadian Journal of Plant Pathology, 34, 562–574. doi:10.1080/07060661.2012.722128.

    Article  CAS  Google Scholar 

  • Feng, J., Hwang, S. F., & Strelkov, S. E. (2013). Genetic transformation of the obligate parasite Plasmodiophora brassicae. Phytopathology, 103, 1052–1057. doi:10.1094/Phyto-01-13-0010-R.

    Article  CAS  PubMed  Google Scholar 

  • Friberg, H., Lagerlöf, J., & Rämert, B. (2005). Germination of Plasmodiophora brassicae resting spores stimulated by a non-host plant. European Journal of Plant Pathology, 113, 275–281. doi:10.1007/S10658-005-2797-0.

    Article  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227. doi:10.1146/annurev.phyto.43.040204.135923.

    Article  CAS  PubMed  Google Scholar 

  • Glöckner, G., Hulsmann, N., Schleicher, M., Noegel, A. A., Eichinger, L., Gallinger, C., et al. (2014). The genome of the Foraminiferan Reticulomyxa filosa. Current Biology, 24, 11–18. doi:10.1016/J.Cub.2013.11.027.

    Article  PubMed  Google Scholar 

  • Graf, H., Sokolowski, F., Klewer, A., Diederichsen, E., Luerssen, H., & Siemens, J. (2001). Electrophoretic karyotype of the obligate biotrophic parasite Plasmodiophora brassicae Wor. Journal of Phytopathology, 149, 313–318. doi:10.1046/J.1439-0434.2001.00623.X.

    Article  CAS  Google Scholar 

  • Graf, H., Fähling, M., & Siemens, J. (2004). Chromosome polymorphism of the obligate biotrophic parasite Plasmodiophora brassicae. Journal of Phytopathology, 152, 86–91.

    Article  CAS  Google Scholar 

  • Haas, B. J., Kamoun, S., Zody, M. C., Jiang, R. H. Y., Handsaker, R. E., Cano, L. M., et al. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 461, 393–398. doi:10.1038/nature08358.

    Article  CAS  PubMed  Google Scholar 

  • Ito, S. I., Yano, S., Tanaka, S., & Kameya-Iwaki, M. (1994). The use of resting spore spheroplasts in the DNA analysis of Plasmodiophora brassicae. Annals of the Phytopathological Society of Japan, 60, 491–495.

    Article  CAS  Google Scholar 

  • Jiang, R. H. Y., de Bruijn, I., Haas, B. J., Belmonte, R., Lobach, L., Christie, J., et al. (2013). Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. Plos Genetics, 9, Artn E1003272. doi:10.1371/Journal.Pgen.1003272.

    Article  Google Scholar 

  • Jones, D. R., Ingram, D. S., & Dixon, G. R. (1982a). Characterization of isolates derived from single resting spores of Plasmodiophora brassicae and studies of their interaction. Plant Pathology, 31, 239–246. doi:10.1111/J.1365-3059.1982.Tb01274.X.

    Article  Google Scholar 

  • Jones, D. R., Ingram, D. S., & Dixon, G. R. (1982b). Factors affecting tests for differential pathogenicity in populations of Plasmodiophora brassicae. Plant Pathology, 31, 229–238. doi:10.1111/J.1365-3059.1982.Tb01273.X.

    Article  Google Scholar 

  • Kageyama, K., & Asano, T. (2009). Life cycle of Plasmodiophora brassicae. Journal of Plant Growth Regulation, 28, 203–211. doi:10.1007/S00344-009-9101-Z.

    Article  CAS  Google Scholar 

  • Kageyama, K., Kamimura, Y., & Hyakumachi, M. (1995). A simple inoculation method with a single resting spore of Plasmodiophora brassicae. Japanese Journal of Phytopathology, 61, 415–418. doi:10.3186/jjphytopath.61.415.

    Article  Google Scholar 

  • Kämper, J., Kahmann, R., Bolker, M., Ma, L. J., Brefort, T., Saville, B. J., et al. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 444, 97–101. doi:10.1038/Nature05248.

    Article  PubMed  Google Scholar 

  • Kemen, E., Gardiner, A., Schultz-Larsen, T., Kemen, A. C., Balmuth, A. L., Robert-Seilaniantz, A., et al. (2011). Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. Plos Biology, 9. doi:10.1371/Journal.Pbio.1001094.

  • Knaust, A., & Ludwig-Müller, J. (2013). The ethylene signaling pathway is needed to restrict root gall growth in Arabidopsis after infection with the obligate biotrophic protist Plasmodiophora brassicae. Journal of Plant Growth Regulation, 32, 9–21. doi:10.1007/S00344-012-9271-Y.

    Article  CAS  Google Scholar 

  • Kobelt, P., Siemens, J., & Sacristan, M. D. (2000). Histological characterisation of the incompatible interaction between Arabidopsis thaliana and the obligate biotrophic pathogen Plasmodiophora brassicae. Mycological Research, 104, 220–225. doi:10.1017/S0953756299001781.

    Article  Google Scholar 

  • Lemarié, S., Robert-Seilaniantz, A., Lariagon, C., Lemoine, J., Marnet, N., Jubault, M., et al. (2015). Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis. Plant and Cell Physiology. doi:10.1093/pcp/pcv127.

    PubMed  Google Scholar 

  • Lovelock, D. A., Donald, C. E., Conlan, X. A., & Cahill, D. M. (2013). Salicylic acid suppression of clubroot in broccoli (Brassicae oleracea var. italica) caused by the obligate biotroph Plasmodiophora brassicae. Australasian Plant Pathology, 42, 141–153. doi:10.1007/S13313-012-0167-X.

    Article  CAS  Google Scholar 

  • Ludwig-Müller, J. (2015). Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. Journal of Plant Physiology, 172, 4–12. doi:10.1016/j.jplph.2014.01.002.

    Article  PubMed  Google Scholar 

  • Ludwig-Müller, J., Prinsen, E., Rolfe, S. A., & Scholes, J. D. (2009). Metabolism and plant hormone action during clubroot disease. Journal of Plant Growth Regulation, 28, 229–244. doi:10.1007/S00344-009-9089-4.

    Article  Google Scholar 

  • Ludwig-Müller, J., Jülke, S., Geiss, K., Richter, F., Mithofer, A., Sola, I., et al. (2015). A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid. Molecular Plant Pathology, 16, 349–364. doi:10.1111/Mpp.12185.

    Article  PubMed  Google Scholar 

  • Malinowski, R., Smith, J. A., Fleming, A. J., Scholes, J. D., & Rolfe, S. A. (2012). Gall formation in clubroot-infected Arabidopsis results from an increase in existing meristematic activities of the host but is not essential for the completion of the pathogen life cycle. The Plant Journal, 71, 226–238. doi:10.1111/j.1365-313X.2012.04983.x.

    Article  CAS  PubMed  Google Scholar 

  • Manzanares-Dauleux, M. J., Divaret, I., Baron, F., & Thomas, G. (2001). Assessment of biological and molecular variability between and within field isolates of Plasmodiophora brassicae. Plant Pathology, 50, 165–173. doi:10.1046/J.1365-3059.2001.00557.X.

    Article  CAS  Google Scholar 

  • Mithen, R., & Magrath, R. (1992). A contribution to the life-history of Plasmodiophora brassicae - secondary plasmodia development in root galls of Arabidopsis thaliana. Mycological Research, 96, 877–885.

    Article  Google Scholar 

  • Möller, M., & Harling, R. (1996). Randomly amplified polymorphic DNA (RAPD) profiling of Plasmodiophora brassicae. Letters in Applied Microbiology, 22, 70–75. doi:10.1111/J.1472-765x.1996.Tb01111.X.

    Article  Google Scholar 

  • Moxham, S. E., & Buczacki, S. T. (1983). Chemical-composition of the resting spore wall of Plasmodiophora brassicae. Transactions of the British Mycological Society, 80, 297–304.

    Article  CAS  Google Scholar 

  • Müller, P., & Hilgenberg, W. (1986). Isomers of zeatin and zeatin riboside in clubroot tissue - Evidence for trans-zeatin biosynthesis by Plasmodiophora brassicae. Physiologia Plantarum, 66, 245–250. doi:10.1111/J.1399-3054.1986.Tb02415.X.

    Article  Google Scholar 

  • Neuhauser, S., Bulman, S., & Kirchmair, M. (2010). Plasmodiophorids: the challenge to understand soil-borne, obligate biotrophs with a multiphasic life cycle. In Y. Gherbawy, & K. Voigt (Eds.), Molecular identification of fungi (pp. 51–78). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Neuhauser, S., Kirchmair, M., Bulman, S., & Bass, D. (2014). Cross-kingdom host shifts of phytomyxid parasites. BMC Evolutionary Biology, 14. doi:10.1186/1471-2148-14-33.

  • Porcel, B. M., Denoeud, F., Opperdoes, F., Noel, B., Madoui, M. A., Hammarton, T. C., et al. (2014). The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. Plos Genetics, 10. doi:10.1371/journal.pgen.1004007.

  • Raffaele, S., & Kamoun, S. (2012). Genome evolution in filamentous plant pathogens: why bigger can be better. Nature Reviews Microbiology, 10, 417–430. doi:10.1038/Nrmicro2790.

    CAS  PubMed  Google Scholar 

  • Schuller, A., Kehr, J., & Ludwig-Müller, J. (2014). Laser microdissection coupled to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora brassicae indicates a role for brassinosteroids in clubroot formation. Plant and Cell Physiology, 55, 392–411. doi:10.1093/Pcp/Pct174.

    Article  CAS  PubMed  Google Scholar 

  • Schwelm, A., Fogelqvist, J., Knaust, A., Jülke, S., Lilja, T., Bonilla-Rosso, G., et al. (2015). The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Scientific Reports, Article: 11153. doi:10.1038/srep11153.

  • Siemens, J., Keller, I., Sarx, J., Kunz, S., Schuller, A., Nagel, W., et al. (2006). Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Molecular Plant-Microbe Interactions, 19, 480–494. doi:10.1094/MPMI-19-0480.

    Article  CAS  PubMed  Google Scholar 

  • Siemens, J., Graf, H., Bulman, S., In, O., & Ludwig-Müller, J. (2009). Monitoring expression of selected Plasmodiophora brassicae genes during clubroot development in Arabidopsis thaliana. Plant Pathology, 58, 130–136. doi:10.1111/J.1365-3059.2008.01943.X.

    Article  CAS  Google Scholar 

  • Spanu, P. D., Abbott, J. C., Amselem, J., Burgis, T. A., Soanes, D. M., Stuber, K., et al. (2010). Genome expansion and gene goss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science, 330, 1543–1546, doi:10.1126/Science.1194573.

  • Staswick, P. E., & Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell, 16, 2117–2127. doi:10.1105/Tpc.104.023549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick, P. E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M. T., Maldonado, M. C., et al. (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell, 17, 616–627. doi:10.1105/Tpc.104.026690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strehlow, B., de Mol, F., & Struck, C. (2014). History of oilseed rape cropping and geographic origin affect the genetic structure of Plasmodiophora brassicae populations. Phytopathology, 104, 532–538. doi:10.1094/PHYTO-07-13-0210-R.

    Article  PubMed  Google Scholar 

  • Strelkov, S. E., & Hwang, S. F. (2014). Special issue: clubroot in the Canadian canola crop: 10 years into the outbreak. Canadian Journal of Plant Pathology, 36, 27–36. doi:10.1080/07060661.2013.863807.

    Article  Google Scholar 

  • Sundelin, T., Christensen, C. B., Larsen, J., Moller, K., Lubeck, M., Bodker, L., et al. (2010). In planta quantification of Plasmodiophora brassicae using signature fatty acids and real-time PCR. Plant Disease, 94, 432–438. doi:10.1094/Pdis-94-4-0432.

    Article  CAS  Google Scholar 

  • Sundelin, T., Jensen, D. F., & Lubeck, M. (2011). Identification of expressed genes during infection of Chinese cabbage (Brassica rapa subsp. pekinensis) by Plasmodiophora brassicae. Journal of Eukaryotic Microbiology, 58, 310–314. doi:10.1111/J.1550-7408.2011.00551.X.

    Article  CAS  PubMed  Google Scholar 

  • Svanström, A., van Leeuwen, M. R., Dijksterhuis, J., & Melin, P. (2014). Trehalose synthesis in Aspergillus niger: characterization of six homologous genes, all with conserved orthologs in related species. BMC Microbiology, 14, Artn 90. doi:10.1186/1471-2180-14-90.

    Article  Google Scholar 

  • Tamada, T., & Kondo, H. (2013). Biological and genetic diversity of plasmodiophorid-transmitted viruses and their vectors. Journal of General Plant Pathology, 79, 307–320. doi:10.1007/S10327-013-0457-3.

    Article  CAS  Google Scholar 

  • Tanaka, S., Ito, S.-i., & Kameya-Iwaki, M. (2001). Electron microscopy of primary zoosporogenesis in Plasmodiophora brassicae. Mycoscience, 42, 389–394. doi:10.1007/BF02461222.

    Article  Google Scholar 

  • Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G. H., et al. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature, 448, 661–665. doi:10.1038/Nature05960.

    Article  CAS  PubMed  Google Scholar 

  • Tyler, B. M., Tripathy, S., Zhang, X. M., Dehal, P., Jiang, R. H. Y., Aerts, A., et al. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science, 313, 1261–1266. doi:10.1126/science.1128796.

    Article  CAS  PubMed  Google Scholar 

  • Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177–206. doi:10.1146/annurev.phyto.050908.135202.

    Article  CAS  PubMed  Google Scholar 

  • Wallenhammar, A. C. (1996). Prevalence of Plasmodiophora brassicae in a spring oilseed rape growing area in central Sweden and factors influencing soil infestation levels. Plant Pathology, 45, 710–719. doi:10.1046/J.1365-3059.1996.D01-173.X.

    Article  Google Scholar 

  • Williams, P. H. (1966). A system for determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga. Phytopathology, 56, 624.

    Google Scholar 

  • Woronin, M. (1878). Plasmodiophora brassicae, Urheber der Kohlpflanzen - Hernie. Jahrbücher für Wissenschaftliche Botanik [translated by Chupp C (1934) Phytopathological Classics No 4. St. Paul, MN: American Phytopathological Society], 11, 548–574.

  • Xue, S., Cao, T., Howard, R. J., Hwang, S. F., & Strelkov, S. E. (2008). Isolation and variation in virulence of single-spore isolates of Plasmodiophora brassicae from Canada. Plant Disease, 92, 456–462. doi:10.1094/Pdis-92-3-0456.

    Article  Google Scholar 

  • Zhang, Z. Q., Li, Q., Li, Z. M., Staswick, P. E., Wang, M. Y., Zhu, Y., et al. (2007). Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiology, 145, 450–464. doi:10.1104/Pp.107.106021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Feng, J., Manolii, V. P., Strelkov, S. E., & Hwang, S.-F. (2015). Characterization of a gene identified in pathotype 5 of the clubroot pathogen Plasmodiophora brassicae. Phytopathology, 105, 764–770. doi:10.1094/PHYTO-10-14-0270-R.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the BioSoM program, and the Swedish University of Agricultural Sciences (SLU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Schwelm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwelm, A., Dixelius, C. & Ludwig-Müller, J. New kid on the block – the clubroot pathogen genome moves the plasmodiophorids into the genomic era. Eur J Plant Pathol 145, 531–542 (2016). https://doi.org/10.1007/s10658-015-0839-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0839-9

Keywords

Navigation