European Journal of Plant Pathology

, Volume 144, Issue 3, pp 655–670 | Cite as

Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA

  • Hossein A. Narouei-KhandanEmail author
  • Susan E. Halbert
  • Susan P. Worner
  • Ariena H. C. van BruggenEmail author


Two approaches to correlative species distribution models (MaxEnt and Multi-Model Framework) were used to predict global and local potential distribution of huanglongbing (HLB) caused by Candidatus Liberibacter asiaticus (CLas) and its vector the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama). Long-term climate data were sourced from the Worldclim website. The global distribution of CLas and ACP was gathered from online databases, literature review and communication with specialists. Data on Clas and ACP distribution in the USA were not used in model calibration to allow model validation for independent locations. Both models successfully predicted Florida and coastal areas in the Gulf Coast states as highly suitable for Clas and ACP. The models also predicted that coastal areas in California were climatologically favorable for ACP and Clas, but less so than in Florida. When current USA presence data were included in the models, the suitable areas for ACP establishment expanded to the Central Valley, CA, while this area remained less conducive for CLas. Climate suitability was primarily related to rainfall and secondarily to temperature. Globally, both models predicted that climates in large areas of Africa, Latin America and North Australia were highly suitable for ACP and CLas, while the climate in the Mediterranean area was moderately suitable for ACP but less suitable for CLas, except for that in southern Portugal and Spain. Clas predictions from our models could be informative for countries like Australia, New Zealand, citrus-producing European countries and much of Africa, where CLas and D. citri have not been reported.


Citrus greening Candidatus Liberibacter asiaticus Diaphorina citri Species distribution models MaxEnt Multi-model framework 



The authors would like to thank the Esther B. O’Keeffe Foundation, which funded the research. We also thank Dr. Janchi Chen, Dr. Weishou Shen, Dr. Helvecio D. Coletta Filho, Dr. Alberto M. Gochez, Dr. Jim A. Faulkner, David M. Johnson, Dr. Senait D. Senay and Dr. Xiaoan Sun who sent us occurrence localities of the target species and Hannah Fahsbender who helped exploring coordinates of many localities. We are grateful to Svetlana Folimonova, Erica Goss and Natasha Shelby for reviewing an earlier version of this manuscript. The authors would like to extend their gratitude to the two anonymous reviewers and the editor for their valuable and insightful comments that improved the quality of the paper. This is Entomology Contribution No. 1286, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Bureau of Entomology, Nematology, and Plant Pathology.

Supplementary material

10658_2015_804_MOESM1_ESM.docx (131 kb)
ESM 1 (DOCX 130 kb)
10658_2015_804_Fig7_ESM.jpg (92 kb)
Fig. S1

Relative contributions of each of 11 environmental variables, selected in the random forest procedure, to the training gain for predictions of citrus huanglongbing (HLB) distribution by the MaxEnt model using the Jackknife test. (JPEG 92 kb)

10658_2015_804_Fig8_ESM.jpg (865 kb)
Fig. S2

Response curves of Asian Citrus psyllid (ACP) and citrus huanglongbing (HLB) to variable Bio-12, annual precipitation (mm), as provided by the Worldclim website, based on predictions made by the MaxEnt model for ACP and HLB. (JPEG 864 kb)

10658_2015_804_Fig9_ESM.jpg (977 kb)
Fig. S3

Enlarged maps of potential habitat suitability of citrus huanglongbing, HLB, in the USA predicted by the MaxEnt (a) and SVM (b) models. (JPEG 977 kb)

10658_2015_804_Fig10_ESM.jpg (85 kb)
Fig. S4

Relative contributions of each of 10 environmental variables, selected in the random forest procedure, to the training gain for predictions of Asian Citrus Psyllid (ACP) distribution by the MaxEnt model using the Jackknife test. (JPEG 84 kb)

10658_2015_804_Fig11_ESM.jpg (874 kb)
Fig. S5

Enlarged maps of potential habitat suitability of the Asian Citrus Psyllid, ACP, in the USA predicted by the MaxEnt (a) and SVM (b) models. (JPEG 873 kb)

10658_2015_804_Fig12_ESM.jpg (2.5 mb)
Fig. S6

Global potential distribution of the Asian Citrus Psyllid, ACP, by MaxEnt (a) and the Support Vector Machine, SVM (b) models when USA presence data were included in the model calibrations. (JPEG 2535 kb)

10658_2015_804_Fig13_ESM.jpg (949 kb)
Fig. S7

Enlarged maps of potential habitat suitability of the Asian citrus psyllid, ACP, in the USA predicted by the MaxEnt (a) and SVM (b) models when USA presence data were included in the model calibrations. (JPEG 949 kb)

10658_2015_804_Fig14_ESM.jpg (394 kb)
Fig. S8

Enlarged maps of the consensus model of either one or both models (MaxEnt and SVM) showing hot spots of potential citrus huanglongbing, HLB, and the Asian Citrus Psyllid, ACP, establishment in the USA. (JPEG 393 kb)


  1. Ammar, E., Shatters, R. G., & Hall, D. G. (2011). Localization of Candidatus Liberibacter asiaticus, associated with citrus Huanglongbing disease, in its psyllid vector using fluorescence in situ hybridization. Journal of Phytopathology, 159(11–12), 726–734.CrossRefGoogle Scholar
  2. Aurambout, J. P., Finlay, K. J., Luck, J., & Beattie, G. A. C. (2009). A concept model to estimate the potential distribution of the Asiatic citrus psyllid Diaphorina citri Kuwayama in Australia under climate change—A means for assessing biosecurity risk. Ecological Modelling, 220(19), 2512–2524.CrossRefGoogle Scholar
  3. Bassanezi, R. B., Montesino, L. H., Gimenes-Fernandes, N., Yamamoto, P. T., Gottwald, T. R., Amorim, L., & Filho, A. B. (2012). Efficacy of area-wide inoculum reduction and vector control on temporal progress of huanglongbing in young sweet orange plantings. Plant Disease, 97(6), 789–796.CrossRefGoogle Scholar
  4. Bellis, G., Hollis, D., & Jacobson, S. (2005). Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), and huanglongbing disease do not exist in the Stapleton Station area of the Northern Territory of Australia. Australian Journal of Entomology, 44(1), 68–70.CrossRefGoogle Scholar
  5. Bove, J. M. (2014). Heat-tolerant Asian HLB meets heat-sensitive African HLB in the Arabian Peninsula! Why? Journal of Citrus Pathology, 1(1).Google Scholar
  6. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.CrossRefGoogle Scholar
  7. Brown, J. L. (2014). SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeography, and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700.CrossRefGoogle Scholar
  8. CDFA (2015). Huanglongbing (HLB) Quarantine information. Accessed September 30 2015.
  9. Chiyaka, C., Singer, B. H., Halbert, S. E., Morris, J. G., & van Bruggen, A. H. (2012). Modeling huanglongbing transmission within a citrus tree. Proceedings of the National Academy of Sciences, 109(30), 12213–12218.CrossRefGoogle Scholar
  10. da Graca, J. V., & Korsten, L. (2004). Citrus huanglongbing: Review, present status and future strategies. In Diseases of fruits and vegetables volume I (pp. 229–245). Springer.Google Scholar
  11. da Graca, J. V., French, J. V., Haslem, P. S., Skaria, M., Sétamou, M., & Salas, B. (2008). Survey for the Asian citrus psyllid, Diaphorina citri, and citrus huanglongbing (greening disease) in Texas. Subtropical Plant Science, 60, 21–26.Google Scholar
  12. Franklin, J. (2013). Species distribution models in conservation biogeography: developments and challenges. Diversity and Distributions, 19(10), 1217–1223.CrossRefGoogle Scholar
  13. Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models - how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21(11), 1126–1136.CrossRefGoogle Scholar
  14. Gottwald, T. R. (2010). Current epidemiological understanding of citrus huanglongbing. Annual Review of Phytopathology, 48, 119–139.PubMedCrossRefGoogle Scholar
  15. Grafton-Cardwell, E. E., Morse, J. G., & Taylor, B. J. (2014). Asian citrus psyllid management strategies for California, 2012 and beyond. Journal of Citrus Pathology, 1(1).Google Scholar
  16. Gutierrez, A. P., & Ponti, L. (2013). Prospective analysis of the geographic distribution and relative abundance of Asian citrus psyllid (Hemiptera:Liviidae) and citrus greening disease in North America and the Mediterranean Basin. Florida Entomologist, 96(4), 1375–1391.CrossRefGoogle Scholar
  17. Halbert, S. E. (2005). The discovery of huanglongbing in Florida. In Proceedings of the 2nd International Citrus Canker and Huanglongbing Research Workshop (pp. 7–11).Google Scholar
  18. Halbert, S. E., Manjunath, K. L., Ramadugu, C., Brodie, M. W., Webb, S. E., & Lee, R. F. (2010). Trailers transporting oranges to processing plants move Asian citrus psyllids. Florida Entomologist, 93(1), 33–38.CrossRefGoogle Scholar
  19. Halbert, S. E., Manjunath, K., Ramadugu, C., & Lee, R. F. (2012). Incidence of huanglongbing-associated candidatus liberibacter asiaticus’ in Diaphorina citri (hemiptera: psyllidae) collected from plants for sale in Florida. Florida Entomologist, 95(3), 617–624.CrossRefGoogle Scholar
  20. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.CrossRefGoogle Scholar
  21. Hoffman, M. T., Doud, M. S., Williams, L., Zhang, M.-Q., Ding, F., Stover, E., et al. (2012). Heat treatment eliminates Candidatus Liberibacter asiaticus’ from infected citrus trees under controlled conditions. Phytopathology, 103(1), 15–22.CrossRefGoogle Scholar
  22. Jarnevich, C. S., & Reynolds, L. V. (2011). Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree. Biological Invasions, 13(1), 153–163.CrossRefGoogle Scholar
  23. Kobori, Y., Takasu, F., & Ohto, Y. (2012). Development of an indiviual-based simulation model for the spread of citrus greening disease by the vector insect Diaphorina citri. INTECH Open Access Publisher.
  24. Kumagai, L. B., LeVesque, C. S., Blomquist, C. L., Madishetty, K., Guo, Y., Woods, P. W., et al. (2014). First report of Candidatus Liberibacter asiaticus associated with citrus Huanglongbing in California. Florida Entomologist, 97, 1825–1828.CrossRefGoogle Scholar
  25. Kunta, M., Sétamou, M., Skaria, M., Rascoe, J., Li, W., Nakhla, M. K., & da Graça, J. V. (2012). First report of citrus huanglongbing in Texas. Phytopathology, 102, S4.CrossRefGoogle Scholar
  26. Lee, J. A., Halbert, S. E., Dawson, W. O., Robertson, C. J., Keesling, J. E., & Singer, B. H. (2015). Asymptomatic spread of huanglongbing and implications for disease control. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1508253112.Google Scholar
  27. Lewis-Rosenblum, H., Martini, X., Tiwari, S., & Stelinski, L. L. (2015). Seasonal movement patterns and long-range dispersal of Asian citrus psyllid in Florida citrus. Journal of Economic Entomology, 108(1), 3–10.PubMedCrossRefGoogle Scholar
  28. Liu, Y. H., & Tsai, J. H. (2000). Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae). Annals of Applied Biology, 137(3), 201–206.CrossRefGoogle Scholar
  29. Lopes, S. A., & Frare, G. F. (2007). Graft transmission and cultivar reaction of citrus to Candidatus liberibacter americanus. Plant Disease, 92(1), 21–24.CrossRefGoogle Scholar
  30. Manjunath, K. L., Halbert, S. E., Ramadugu, C., Webb, S., & Lee, R. F. (2008). Detection of Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida. Phytopathology, 98(4), 387–396.PubMedCrossRefGoogle Scholar
  31. Martinez-Corrillo, J. L., Valenzuela-Lagarda, J., Suarez-Beltran, A., & Pérez-López, B. (2015). Three year results of the area wide management program for the Asian Citrus Psyllid Diaphorina citri Kuwayama (Hemíptera: Psyllidae) in southern Sonora, Mexico. Poster presented at: 4th International research conference on HLB, 9–13. Florida, USA.Google Scholar
  32. Marutani-Hert, M., Hunter, W. B., & Hall, D. G. (2010). Gene response to stress in the Asian citrus psyllid (Hemiptera: Psyllidae). Florida Entomologist, 93(4), 519–525.CrossRefGoogle Scholar
  33. Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36, 001–012.CrossRefGoogle Scholar
  34. Narouei Khandan, H. (2014). Ensemble models to assess the risk of exotic plant pathogens in a changing climate (Doctoral dissertation). Lincoln University.Google Scholar
  35. Narouei Khandan, H., Worner, S. P., Jones, E. E., Villjanen-Rollinson, S. L. H., Gallipoli, L., Mazzaglia, A., & Balestra, G. M. (2013). Predicting the potential global distribution of Pseudomonas syringae pv. actinidiae (Psa). New Zealand Plant Protection, 66, 184–193.Google Scholar
  36. Parry, M., Gibson, G. J., Parnell, S., Gottwald, T. R., Irey, M. S., Gast, T. C., & Gilligan, C. A. (2014). Bayesian inference for an emerging arboreal epidemic in the presence of control. Proceedings of the National Academy of Sciences, 111(17), 6258–6262.CrossRefGoogle Scholar
  37. Peterson, A. T. (2011). Ecological niches and geographic distributions (mpb-49). Princeton University Press.Google Scholar
  38. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259.CrossRefGoogle Scholar
  39. Razi, M. F., Keremane, M. L., Ramadugu, C., Roose, M., Khan, I. A., & Lee, R. F. (2014). Detection of citrus Huanglongbing-Associated’Candidatus Liberibacter asiaticus’ in Citrus and Diaphorina citri in Pakistan, seasonal variability, and implications for disease management. Phytopathology, 104(3), 257–268.PubMedCrossRefGoogle Scholar
  40. Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLoS One, 8(8), e71218.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Shen, W., Halbert, S. E., Dickstein, E., Manjunath, K. L., Shimwela, M. M., & van Bruggen, A. H. C. (2013). Occurrence and in-grove distribution of citrus huanglongbing in north central Florida. Journal of Plant Pathology, 95(2), 361–371.Google Scholar
  42. Tiwari, S., Mann, R. S., Rogers, M. E., & Stelinski, L. L. (2011). Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Management Science, 67(10), 1258–1268.PubMedCrossRefGoogle Scholar
  43. Torres-Pacheco, I., López-Arroyo, J., Aguirre-Gómez, J., Guevara-González, R., Yänez-López, R., Hernández-Zul, M., & Quijano-Carranza, J. (2013). Potential distribution in Mexico of Diaphorina citri (Hemiptera: Psyllidae) vector of Huanglongbing pathogen. Florida Entomologist, 96(1), 36–47.CrossRefGoogle Scholar
  44. Townsend Peterson, A., Papeş, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: a comparison of GARP and MaxEnt. Ecography, 30(4), 550–560.CrossRefGoogle Scholar
  45. Vaclavik, T., & Meentemeyer, R. K. (2009). Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecological Modelling, 220(23), 3248–3258.CrossRefGoogle Scholar
  46. Vilamiu, R. G. d’A, Ternes, S., Braga, G. A., Laranjeira, F. F., Simos, T. E., Psihoyios, G., et al. (2012). A model for Huanglongbing spread between citrus plants including delay times and human intervention. In AIP Conference Proceedings-American Institute of Physics (Vol. 1479, p. 2315).Google Scholar
  47. Worner, S. P., Ikeda, T., Leday, G., Zealand, N., & Joy, M. (2010). Surveillance tools for freshwater invertebrates. MAF Biosecurity Technical Paper (In Press). Ministry of Agriculture and Forestry, New Zealand. Google Scholar
  48. Zhang, M., Powell, C. A., Zhou, L., He, Z., Stover, E., & Duan, Y. (2011). Chemical compounds effective against the citrus huanglongbing bacterium‘Candidatus Liberibacter asiaticus’ in planta. Phytopathology, 101(9), 1097–1103.PubMedCrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  1. 1.Department of Plant Pathology and Emerging Pathogens InstituteUniversity of FloridaGainesvilleUSA
  2. 2.Florida Department of Agriculture and Consumer Services, Division of Plant IndustryGainesvilleUSA
  3. 3.Bio-Protection Research CentreLincoln UniversityLincolnNew Zealand

Personalised recommendations