Skip to main content
Log in

Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Two approaches to correlative species distribution models (MaxEnt and Multi-Model Framework) were used to predict global and local potential distribution of huanglongbing (HLB) caused by Candidatus Liberibacter asiaticus (CLas) and its vector the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama). Long-term climate data were sourced from the Worldclim website. The global distribution of CLas and ACP was gathered from online databases, literature review and communication with specialists. Data on Clas and ACP distribution in the USA were not used in model calibration to allow model validation for independent locations. Both models successfully predicted Florida and coastal areas in the Gulf Coast states as highly suitable for Clas and ACP. The models also predicted that coastal areas in California were climatologically favorable for ACP and Clas, but less so than in Florida. When current USA presence data were included in the models, the suitable areas for ACP establishment expanded to the Central Valley, CA, while this area remained less conducive for CLas. Climate suitability was primarily related to rainfall and secondarily to temperature. Globally, both models predicted that climates in large areas of Africa, Latin America and North Australia were highly suitable for ACP and CLas, while the climate in the Mediterranean area was moderately suitable for ACP but less suitable for CLas, except for that in southern Portugal and Spain. Clas predictions from our models could be informative for countries like Australia, New Zealand, citrus-producing European countries and much of Africa, where CLas and D. citri have not been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ammar, E., Shatters, R. G., & Hall, D. G. (2011). Localization of Candidatus Liberibacter asiaticus, associated with citrus Huanglongbing disease, in its psyllid vector using fluorescence in situ hybridization. Journal of Phytopathology, 159(11–12), 726–734.

    Article  CAS  Google Scholar 

  • Aurambout, J. P., Finlay, K. J., Luck, J., & Beattie, G. A. C. (2009). A concept model to estimate the potential distribution of the Asiatic citrus psyllid Diaphorina citri Kuwayama in Australia under climate change—A means for assessing biosecurity risk. Ecological Modelling, 220(19), 2512–2524.

    Article  Google Scholar 

  • Bassanezi, R. B., Montesino, L. H., Gimenes-Fernandes, N., Yamamoto, P. T., Gottwald, T. R., Amorim, L., & Filho, A. B. (2012). Efficacy of area-wide inoculum reduction and vector control on temporal progress of huanglongbing in young sweet orange plantings. Plant Disease, 97(6), 789–796.

    Article  Google Scholar 

  • Bellis, G., Hollis, D., & Jacobson, S. (2005). Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), and huanglongbing disease do not exist in the Stapleton Station area of the Northern Territory of Australia. Australian Journal of Entomology, 44(1), 68–70.

    Article  Google Scholar 

  • Bove, J. M. (2014). Heat-tolerant Asian HLB meets heat-sensitive African HLB in the Arabian Peninsula! Why? Journal of Citrus Pathology, 1(1).

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Brown, J. L. (2014). SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeography, and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700.

    Article  Google Scholar 

  • CDFA (2015). Huanglongbing (HLB) Quarantine information. Accessed September 30 2015. http://www.cdfa.ca.gov/plant/pe/interiorexclusion/hlb_quarantine.html

  • Chiyaka, C., Singer, B. H., Halbert, S. E., Morris, J. G., & van Bruggen, A. H. (2012). Modeling huanglongbing transmission within a citrus tree. Proceedings of the National Academy of Sciences, 109(30), 12213–12218.

    Article  CAS  Google Scholar 

  • da Graca, J. V., & Korsten, L. (2004). Citrus huanglongbing: Review, present status and future strategies. In Diseases of fruits and vegetables volume I (pp. 229–245). Springer.

  • da Graca, J. V., French, J. V., Haslem, P. S., Skaria, M., Sétamou, M., & Salas, B. (2008). Survey for the Asian citrus psyllid, Diaphorina citri, and citrus huanglongbing (greening disease) in Texas. Subtropical Plant Science, 60, 21–26.

    Google Scholar 

  • Franklin, J. (2013). Species distribution models in conservation biogeography: developments and challenges. Diversity and Distributions, 19(10), 1217–1223.

    Article  Google Scholar 

  • Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models - how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21(11), 1126–1136.

    Article  Google Scholar 

  • Gottwald, T. R. (2010). Current epidemiological understanding of citrus huanglongbing. Annual Review of Phytopathology, 48, 119–139.

    Article  PubMed  CAS  Google Scholar 

  • Grafton-Cardwell, E. E., Morse, J. G., & Taylor, B. J. (2014). Asian citrus psyllid management strategies for California, 2012 and beyond. Journal of Citrus Pathology, 1(1).

  • Gutierrez, A. P., & Ponti, L. (2013). Prospective analysis of the geographic distribution and relative abundance of Asian citrus psyllid (Hemiptera:Liviidae) and citrus greening disease in North America and the Mediterranean Basin. Florida Entomologist, 96(4), 1375–1391.

    Article  Google Scholar 

  • Halbert, S. E. (2005). The discovery of huanglongbing in Florida. In Proceedings of the 2nd International Citrus Canker and Huanglongbing Research Workshop (pp. 7–11).

  • Halbert, S. E., Manjunath, K. L., Ramadugu, C., Brodie, M. W., Webb, S. E., & Lee, R. F. (2010). Trailers transporting oranges to processing plants move Asian citrus psyllids. Florida Entomologist, 93(1), 33–38.

    Article  Google Scholar 

  • Halbert, S. E., Manjunath, K., Ramadugu, C., & Lee, R. F. (2012). Incidence of huanglongbing-associated candidatus liberibacter asiaticus’ in Diaphorina citri (hemiptera: psyllidae) collected from plants for sale in Florida. Florida Entomologist, 95(3), 617–624.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.

    Article  Google Scholar 

  • Hoffman, M. T., Doud, M. S., Williams, L., Zhang, M.-Q., Ding, F., Stover, E., et al. (2012). Heat treatment eliminates Candidatus Liberibacter asiaticus’ from infected citrus trees under controlled conditions. Phytopathology, 103(1), 15–22.

    Article  Google Scholar 

  • Jarnevich, C. S., & Reynolds, L. V. (2011). Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree. Biological Invasions, 13(1), 153–163.

    Article  Google Scholar 

  • Kobori, Y., Takasu, F., & Ohto, Y. (2012). Development of an indiviual-based simulation model for the spread of citrus greening disease by the vector insect Diaphorina citri. INTECH Open Access Publisher. http://cdn.intechopen.com/pdfs/32853.pdf

  • Kumagai, L. B., LeVesque, C. S., Blomquist, C. L., Madishetty, K., Guo, Y., Woods, P. W., et al. (2014). First report of Candidatus Liberibacter asiaticus associated with citrus Huanglongbing in California. Florida Entomologist, 97, 1825–1828.

    Article  Google Scholar 

  • Kunta, M., Sétamou, M., Skaria, M., Rascoe, J., Li, W., Nakhla, M. K., & da Graça, J. V. (2012). First report of citrus huanglongbing in Texas. Phytopathology, 102, S4.

    Article  Google Scholar 

  • Lee, J. A., Halbert, S. E., Dawson, W. O., Robertson, C. J., Keesling, J. E., & Singer, B. H. (2015). Asymptomatic spread of huanglongbing and implications for disease control. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1508253112.

    Google Scholar 

  • Lewis-Rosenblum, H., Martini, X., Tiwari, S., & Stelinski, L. L. (2015). Seasonal movement patterns and long-range dispersal of Asian citrus psyllid in Florida citrus. Journal of Economic Entomology, 108(1), 3–10.

    Article  PubMed  Google Scholar 

  • Liu, Y. H., & Tsai, J. H. (2000). Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae). Annals of Applied Biology, 137(3), 201–206.

    Article  Google Scholar 

  • Lopes, S. A., & Frare, G. F. (2007). Graft transmission and cultivar reaction of citrus to Candidatus liberibacter americanus. Plant Disease, 92(1), 21–24.

    Article  Google Scholar 

  • Manjunath, K. L., Halbert, S. E., Ramadugu, C., Webb, S., & Lee, R. F. (2008). Detection of Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida. Phytopathology, 98(4), 387–396.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Corrillo, J. L., Valenzuela-Lagarda, J., Suarez-Beltran, A., & Pérez-López, B. (2015). Three year results of the area wide management program for the Asian Citrus Psyllid Diaphorina citri Kuwayama (Hemíptera: Psyllidae) in southern Sonora, Mexico. Poster presented at: 4th International research conference on HLB, 9–13. Florida, USA.

  • Marutani-Hert, M., Hunter, W. B., & Hall, D. G. (2010). Gene response to stress in the Asian citrus psyllid (Hemiptera: Psyllidae). Florida Entomologist, 93(4), 519–525.

    Article  CAS  Google Scholar 

  • Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36, 001–012.

    Article  Google Scholar 

  • Narouei Khandan, H. (2014). Ensemble models to assess the risk of exotic plant pathogens in a changing climate (Doctoral dissertation). Lincoln University.

  • Narouei Khandan, H., Worner, S. P., Jones, E. E., Villjanen-Rollinson, S. L. H., Gallipoli, L., Mazzaglia, A., & Balestra, G. M. (2013). Predicting the potential global distribution of Pseudomonas syringae pv. actinidiae (Psa). New Zealand Plant Protection, 66, 184–193.

    Google Scholar 

  • Parry, M., Gibson, G. J., Parnell, S., Gottwald, T. R., Irey, M. S., Gast, T. C., & Gilligan, C. A. (2014). Bayesian inference for an emerging arboreal epidemic in the presence of control. Proceedings of the National Academy of Sciences, 111(17), 6258–6262.

    Article  CAS  Google Scholar 

  • Peterson, A. T. (2011). Ecological niches and geographic distributions (mpb-49). Princeton University Press.

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259.

    Article  Google Scholar 

  • Razi, M. F., Keremane, M. L., Ramadugu, C., Roose, M., Khan, I. A., & Lee, R. F. (2014). Detection of citrus Huanglongbing-Associated’Candidatus Liberibacter asiaticus’ in Citrus and Diaphorina citri in Pakistan, seasonal variability, and implications for disease management. Phytopathology, 104(3), 257–268.

    Article  PubMed  CAS  Google Scholar 

  • Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLoS One, 8(8), e71218.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shen, W., Halbert, S. E., Dickstein, E., Manjunath, K. L., Shimwela, M. M., & van Bruggen, A. H. C. (2013). Occurrence and in-grove distribution of citrus huanglongbing in north central Florida. Journal of Plant Pathology, 95(2), 361–371.

    Google Scholar 

  • Tiwari, S., Mann, R. S., Rogers, M. E., & Stelinski, L. L. (2011). Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Management Science, 67(10), 1258–1268.

    Article  PubMed  CAS  Google Scholar 

  • Torres-Pacheco, I., López-Arroyo, J., Aguirre-Gómez, J., Guevara-González, R., Yänez-López, R., Hernández-Zul, M., & Quijano-Carranza, J. (2013). Potential distribution in Mexico of Diaphorina citri (Hemiptera: Psyllidae) vector of Huanglongbing pathogen. Florida Entomologist, 96(1), 36–47.

    Article  Google Scholar 

  • Townsend Peterson, A., Papeş, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: a comparison of GARP and MaxEnt. Ecography, 30(4), 550–560.

    Article  Google Scholar 

  • Vaclavik, T., & Meentemeyer, R. K. (2009). Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecological Modelling, 220(23), 3248–3258.

    Article  Google Scholar 

  • Vilamiu, R. G. d’A, Ternes, S., Braga, G. A., Laranjeira, F. F., Simos, T. E., Psihoyios, G., et al. (2012). A model for Huanglongbing spread between citrus plants including delay times and human intervention. In AIP Conference Proceedings-American Institute of Physics (Vol. 1479, p. 2315).

  • Worner, S. P., Ikeda, T., Leday, G., Zealand, N., & Joy, M. (2010). Surveillance tools for freshwater invertebrates. MAF Biosecurity Technical Paper (In Press). Ministry of Agriculture and Forestry, New Zealand.

  • Zhang, M., Powell, C. A., Zhou, L., He, Z., Stover, E., & Duan, Y. (2011). Chemical compounds effective against the citrus huanglongbing bacterium‘Candidatus Liberibacter asiaticus’ in planta. Phytopathology, 101(9), 1097–1103.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Esther B. O’Keeffe Foundation, which funded the research. We also thank Dr. Janchi Chen, Dr. Weishou Shen, Dr. Helvecio D. Coletta Filho, Dr. Alberto M. Gochez, Dr. Jim A. Faulkner, David M. Johnson, Dr. Senait D. Senay and Dr. Xiaoan Sun who sent us occurrence localities of the target species and Hannah Fahsbender who helped exploring coordinates of many localities. We are grateful to Svetlana Folimonova, Erica Goss and Natasha Shelby for reviewing an earlier version of this manuscript. The authors would like to extend their gratitude to the two anonymous reviewers and the editor for their valuable and insightful comments that improved the quality of the paper. This is Entomology Contribution No. 1286, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Bureau of Entomology, Nematology, and Plant Pathology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein A. Narouei-Khandan or Ariena H. C. van Bruggen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 130 kb)

Fig. S1

Relative contributions of each of 11 environmental variables, selected in the random forest procedure, to the training gain for predictions of citrus huanglongbing (HLB) distribution by the MaxEnt model using the Jackknife test. (JPEG 92 kb)

Fig. S2

Response curves of Asian Citrus psyllid (ACP) and citrus huanglongbing (HLB) to variable Bio-12, annual precipitation (mm), as provided by the Worldclim website, based on predictions made by the MaxEnt model for ACP and HLB. (JPEG 864 kb)

Fig. S3

Enlarged maps of potential habitat suitability of citrus huanglongbing, HLB, in the USA predicted by the MaxEnt (a) and SVM (b) models. (JPEG 977 kb)

Fig. S4

Relative contributions of each of 10 environmental variables, selected in the random forest procedure, to the training gain for predictions of Asian Citrus Psyllid (ACP) distribution by the MaxEnt model using the Jackknife test. (JPEG 84 kb)

Fig. S5

Enlarged maps of potential habitat suitability of the Asian Citrus Psyllid, ACP, in the USA predicted by the MaxEnt (a) and SVM (b) models. (JPEG 873 kb)

Fig. S6

Global potential distribution of the Asian Citrus Psyllid, ACP, by MaxEnt (a) and the Support Vector Machine, SVM (b) models when USA presence data were included in the model calibrations. (JPEG 2535 kb)

Fig. S7

Enlarged maps of potential habitat suitability of the Asian citrus psyllid, ACP, in the USA predicted by the MaxEnt (a) and SVM (b) models when USA presence data were included in the model calibrations. (JPEG 949 kb)

Fig. S8

Enlarged maps of the consensus model of either one or both models (MaxEnt and SVM) showing hot spots of potential citrus huanglongbing, HLB, and the Asian Citrus Psyllid, ACP, establishment in the USA. (JPEG 393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narouei-Khandan, H.A., Halbert, S.E., Worner, S.P. et al. Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. Eur J Plant Pathol 144, 655–670 (2016). https://doi.org/10.1007/s10658-015-0804-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0804-7

Keywords

Navigation