European Journal of Plant Pathology

, Volume 144, Issue 3, pp 619–630 | Cite as

Candidatus phytoplasma solani’ genotypes associated with potato stolbur in Serbia and the role of Hyalesthes obsoletus and Reptalus panzeri (hemiptera, cixiidae) as natural vectors

  • Milana MitrovićEmail author
  • Miljana Jakovljević
  • Jelena Jović
  • Oliver Krstić
  • Andrea Kosovac
  • Valeria Trivellone
  • Mauro Jermini
  • Ivo Toševski
  • Tatjana Cvrković


A progressive spread of stolbur-associated symptoms observed in potato fields in Serbia over the past few years initiated the study on disease epidemiology and transmission pathways performed during 2013 and 2014. Inspection of potato fields on 12 localities in northern Serbia revealed high incidence (60 % of symptomatic plants) and wide dispersal (100 % of inspected localities) of ‘Candidatus Phytoplasma solani’. A qualitative analysis of Auchenorrhyncha fauna in affected potato fields identified 16 species, however only Hyalesthes obsoletus, Reptalus panzeri and R. quinquecostatus tested positive for ‘Ca. P. solani’. Multilocus typing of strains associated with field collected potato plants and insects had been performed to identify the propagation scenario underlying the threatening epidemics. Combined analyses of the tuf, stamp and vmp1 genes detected ten genotypes, seven of which were shared by the potato plants and insects, confirming their interaction, with no clear species-specific association of certain ‘Ca. P. solani’ genotypes with plausible insect vectors. Semi- field experiments with naturally ‘Ca. P. solani’-infected H. obsoletus and R. panzeri confirmed the ability of both species to successfully transmit the pathogen to potato plants and induce symptoms characteristic of stolbur disease. The third putative vector R. quinquecostatus shared genotypes of ‘Ca. P. solani’ with potato plants and other two cixiids, and though not tested in this study should not be ruled out as a potential vector. Our study revealed rather complex epidemiology of potato stolbur in Serbia involving several possible routes of horizontal transmission and provided experimental evidence for two natural planthopper vectors.


Hyalesthes obsoletus Multilocus typing Potato stolbur Reptalus panzer Reptalus quinquecostatus Vector 



The authors are grateful to Xavier Foissac (INRA, Bordeaux-France) and Michael Maixner (JKI, Siebeldingen-Germany) for providing ‘Ca. P. solani’ reference strains. We thank the Swiss National Science Foundation for financial support during this study through the SCOPES grant IZ73Z0_152414 and Ministry of Education and Science of Republic of Serbia through grant III43001.


  1. Angelini, E., Clair, D., Borgo, M., Bertaccini, A., & Boudon-Padieu, E. (2001). Flavescence doree in France and Italy – occurrence of closely related phytoplasma isolates and their near relationships to palatinate grapevine yellows and an alder yellows phytoplasma. Vitis, 40, 79–86.Google Scholar
  2. Aryan, A., Brader, G., Mörtel, J., Pastar, M., & Riedle-Bauer, M. (2014). An abundant ‘Candidatus phytoplasma solani’ tuf b strain is associated with grapevine, stinging nettle and Hyalesthes obsoletus. European Journal of Plant Pathology, 140, 213–227.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Atanasova, B., Jakovljević, M., Spasov, D., Jović, J., Mitrović, M., Toševski, I., & Cvrković, T. (2015). The molecular epidemiology of bois noir grapevine yellows caused by ‘Candidatus Phytoplasma solani’ in the Republic of Macedonia. European Journal of Plant Pathology, doi: 10.1007/s10658-015-0649-0.
  4. Biedermann, R., & Niedringhaus, R. (2004). Die zikaden deutschlands –bestimmungstafeln für alle arten. WABV: Scheessel.Google Scholar
  5. Bressan, A., Sémétey, O., Nusillard, B., Clair, D., & Boudon-Padieu, E. (2008). Insect vectors (hemiptera: cixiidae) and pathogens associated with the disease syndrome “basses richesses” of sugar beet in France. Plant Disease, 92, 113–119.CrossRefGoogle Scholar
  6. Cimerman, A., Pacifico, D., Salar, P., Marzachi, C., & Foissac, X. (2009). Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the stolbur phytoplasma. Applied and Environmental Microbiology, 75, 2951–2957.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Clair, D., Larrue, J., Aubert, G., Gillet, J., Cloquemin, G., & Boudon-Padieu, E. (2003). A multiplex nested-PCR assay for sensitive and simultaneous detection and direct identification of phytoplasma in the elm yellows group and stolbur group and its use in survey of grapevine yellows in France. Vitis, 42, 151–157.Google Scholar
  8. Cvrković, T. (2010). Diverzitet faune cikada u vinogradima srbije i njihova uloga u prenošenju bois noir fitoplazme. In Doktorska disertacija. Poljoprivredni fakultet: Beograd.Google Scholar
  9. Cvrković, T., Jović, J., Mitrović, M., Krstić, O., & Toševski, I. (2014). Experimental and molecular evidence of Reptalus panzeri as a natural vector of bois noir. Plant Pathology, 63, 42–53.CrossRefGoogle Scholar
  10. EFSA Panel on Plant Health. (2014). Scientific Opinion on the pest categorisation of Candidatus Phytoplasma solani. EFSA Journal 2014; 12 (12): 3924.Google Scholar
  11. Ember, I., Acs, Z., Munyaneza, J. E., Crosslin, J. M., & Kölber, M. (2011). Survey and molecular detection of phytoplasmas associated with potato in Romania and southern Russia. European Journal of Plant Pathology, 130, 367–377.CrossRefGoogle Scholar
  12. EPPO/CABI (1996). Potato purple-top wilt phytoplasma. In I. M. Smith, D. G. McNamara, P. R. Scott, & M. Holdderness (Eds.), Quarantine pests for Europe (pp. 1–5). Wallingford: CAB International.Google Scholar
  13. Fabre, A., Danet, J. L., & Foissac, X. (2011). The stolbur phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene, 472, 37–41.PubMedCrossRefGoogle Scholar
  14. Fialová, R., Válová, P., Balakishiyeva, G., Danet, J. L., Šafárová, D., Foissac, X., & Navrátil, M. (2009). Genetic variability of stolbur phytoplasma in annual crop and wild plant species in south Moravia (Czech Republic). Journal of Plant Pathology, 91, 411–416.Google Scholar
  15. Gatineau, F., Larrue, J., Clair, D., Lorton, F., Richard-Molard, M., & Boudon-Padieu, E. (2001). A new natural planthopper vector of stolbur phytoplasma in the genus Pentastiridius (hemiptera: cixiidae). European Journal of Plant Pathology, 107, 263–271.CrossRefGoogle Scholar
  16. Girsova, N., Bottner, K. D., Mozhaeva, K. A., Kastalyeava, T. B., Owens, R. A., Lee, I. M. (2008). Molecular detection and identification of Group 16SrI and 16SrXII phytoplasmas associated with diseased potatoes in Russia. Plant Disease 92 (4), pp. 654.Google Scholar
  17. Holeva, M. C., Glynos P. E., Karafla, C. D., Koutsioumari, E. M., Simoglou, K. B., Eleftheriadis, E. (2014). First report of Candidatus Phytoplasma solani associated with potato Plants in Greece. Plant Disease, 98 (12), pp. 1739.Google Scholar
  18. Holzinger, W. E., Kammerlander, I., & Nickel, H. (2003). The auchenorrhyncha of Central Europe, fulgoromorpha, cicadomorpha excl. Cicadellidae (p. 673). Leiden: Brill Academic Publishers.Google Scholar
  19. Ivanović, Ž., Trkulja, N., Pfaf Dolovac, E., Dolovac, N., Živković, S., Jović, J., & Mitrović, M. (2011). First report of stolbur phytoplasma infecting celery in Serbia. Bulletin of Insectology, 64, S239–S240.Google Scholar
  20. Jović, J., Cvrković, T., Mitrović, M., Krnjajić, S., Redinbaugh, M. G., Pratt, R. C., Gingery, R. E., Hogenhout, S. A., & Toševski, I. (2007). Roles of stolbur phytoplasma and Reptalus panzeri (cixiinae, auchenorrhyncha) in the epidemiology of maize redness in Serbia. European Journal of Plant Pathology, 118, 85–89.CrossRefGoogle Scholar
  21. Jović, J., Cvrković, T., Mitrović, M., Krnjajić, S., Petrović, A., Redinbaugh, M. G., Pratt, R. C., Hogenhout, S. A., & Toševski, I. (2009). Stolbur phytoplasma transmission to maize by Reptalus panzeri and the disease cycle of maize redness in Serbia. Phytopathology, 99, 1053–1061.PubMedCrossRefGoogle Scholar
  22. Jović, J., Ember, I., Mitrović, M., Cvrković, T., Krstić, O., Krnjajić, O., Acs, Z., Kolber, M., & Toševski, I. (2011). Molecular detection of potato stolbur phytoplasma in Serbia. Bulletin of Insectology, 64, S83–S84.Google Scholar
  23. Kosovac, A., Radonjić, S., Hrnčić, S., Krstić, O., Toševski, I., & Jović, J. (2015). Molecular tracing of the transmission routes of Bois noir in Mediterranean vineyards of Montenegro and experimental evidence for the epidemiological role of Vitex agnus-castus (lamiaceae) and associated Hyalesthes obsoletus (cixiidae). Plant Pathology. doi: 10.1111/ppa.12409.
  24. Langer, M., & Maixner, M. (2004). Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP analysis of non-ribosomal DNA. Vitis, 43, 191–199.Google Scholar
  25. Maixner, M. (1994). Transmission of German grapevine yellows (vergilbungskrankheit) by the planthopper Hyalesthes obsoletus (auchenorrhyncha: cixiidae). Vitis, 33, 103–104.Google Scholar
  26. Mitrović, M., Jović, J., Cvrković, T., Krstić, O., Trkulja, N., & Toševski, I. (2012). Characterisation of a 16SrII phytoplasma strain associated with bushy stunt of hawkweed oxtongue (Picris hieracioides) in south-eastern Serbia and the role of the leafhopper Neoaliturus fenestratus (deltocephalinae) as a natural vector. European Journal of Plant Pathology, 134, 647–660.CrossRefGoogle Scholar
  27. Mitrović, M., Cvrković, T., Jović, J., Krstić, O., Jakovljević, M., Kosovac, A., & Toševski, I. (2015a). First report of ‘Candidatus Phytoplasma solani’ infecting garden bean Phaseolus vulgaris L. in Serbia. Plant Disease, 99 (4): 551.Google Scholar
  28. Mitrović, M., Trivellone, V., Jović, J., Cvrković, T., Jakovljević, M., Kosovac, A., Krstić, O., & Toševski, I. (2015b). Potential hemipteran vectors of stolbur phytoplasma in potato fields in Serbia. Phytopathogenic Mollicutes, 5, S49–S50.CrossRefGoogle Scholar
  29. Murolo, S., & Romanazzi, G. (2015). In-vineyard population structure of ‘Candidatus phytoplasma solani’ using multilocus sequence typing analysis. Infection, Genetics and Evolution. doi: 10.1016/j.meegid.2015.01.028.PubMedGoogle Scholar
  30. Murolo, S., Marcone, C., Prota, V., Garau, R., Foissac, X., & Romanazzi, G. (2010). Genetic variability of the stolbur phytoplasma vmp1 gene in grapevines, bindweeds and vegetables. Journal of Applied Microbiology, 109, 2049–2059.PubMedCrossRefGoogle Scholar
  31. Murolo, S., Marcone, C., Prota, V., Garau, R., Foissac, X., & Romanazzi, G. (2013). Genetic variability of the stolbur phytoplasma vmp1 gene in grapevines, bindweeds and vegetables. Corrigendum. Journal of AppliedMicrobiology, 115, 631–633.Google Scholar
  32. Quaglino, F., Zhao, Y., Casati, P., Bulgari, D., Bianco, P. A., Wei, W., & Davis, R. E. (2013). ‘Candidatus phytoplasma solani’, a novel taxon associated with stolbur- and bois noir-related diseases of plants. International Journal of Systematic and Evolutionary Microbiology, 63, 2879–2894.PubMedCrossRefGoogle Scholar
  33. Radonjić, S., Hrnčić, S., Jović, J., Cvrković, T., Krstić, O., Krnjajić, S., & Toševski, I. (2009). Occurrence and distribution of grapevine yellows caused by stolbur phytoplasma in Montenegro. Journal of Phytopathology, 157, 682–685.CrossRefGoogle Scholar
  34. Riedle-Bauer, M., Tiefenbrunner, W., Otreba, J., Hanak, K., Schildberger, B., & Regner, F. (2006). Epidemiological observations on bois noir in Austrian vineyards. Mitteilungen Klosterneuburg, 56, 177–181.Google Scholar
  35. Sforza, R., Clair, D., Daire, X., Larrue, J., & Boudon-Padieu, E. (1998). The role of Hyalesthes obsoletus (hemiptera: cixiidae) in the occurrence of bois noir of grapevines in France. Journal of Phytopathology, 146, 549–556.CrossRefGoogle Scholar
  36. Tahzima, R., Maes, M. & De Jonghe, K. (2013). First occurence of Candidatus Phytoplasma solani associated with seed potato in Belgium. Abstract book 65th International symposium on crop protection (ISCP), pp. 649, May 21, 2013, Ghent, Belgium.
  37. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Trivellone, V., Pinzauti, F., & Bagnoli, B. (2005). Reptalus quinquecostatus (dufour) (auchenorrhyncha cixiidae) as a possible vector of stolbur phytoplasma in a vineyard in Tuscany. Redia, 88, 103–108.Google Scholar
  39. Trkulja, N., Ivanović, Ž., Pfaf Dolovac, E., Dolovac, N., Živković, S., Jović, J., & Mitrović, M. (2011). Stolbur phytoplasma infection of kale crops (Brassica oleracea var. gemmifera L.) in Serbia. Bulletin of Insectology, 64, S81–S82.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2015

Authors and Affiliations

  • Milana Mitrović
    • 1
    Email author
  • Miljana Jakovljević
    • 1
  • Jelena Jović
    • 1
  • Oliver Krstić
    • 1
  • Andrea Kosovac
    • 1
  • Valeria Trivellone
    • 2
  • Mauro Jermini
    • 2
  • Ivo Toševski
    • 1
    • 3
  • Tatjana Cvrković
    • 1
  1. 1.Department of Plant PestsInstitute for Plant Protection and EnvironmentBelgradeSerbia
  2. 2.Agroscope Changins-Wädenswil ACWCadenazzoSwitzerland
  3. 3.CABIDelémontSwitzerland

Personalised recommendations